Optimization of Aerosol Model Selection for TROPOMI/S5P
To retrieve aerosol properties from satellite measurements, micro-physical aerosol models have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that takes into account mode...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/13/2489 |
id |
doaj-57ab1aa3c21447a18e475f542df87337 |
---|---|
record_format |
Article |
spelling |
doaj-57ab1aa3c21447a18e475f542df873372021-07-15T15:44:14ZengMDPI AGRemote Sensing2072-42922021-06-01132489248910.3390/rs13132489Optimization of Aerosol Model Selection for TROPOMI/S5PLanlan Rao0Jian Xu1Dmitry S. Efremenko2Diego G. Loyola3Adrian Doicu4Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyTo retrieve aerosol properties from satellite measurements, micro-physical aerosol models have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that takes into account model uncertainties to retrieve the aerosol optical depth and layer height from synthetic and real TROPOMI O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>A band measurements. The results show that in case of insufficient information for an appropriate micro-physical model selection, the Bayesian algorithm improves the accuracy of the solution.https://www.mdpi.com/2072-4292/13/13/2489model selectionaerosol retrievalsTROPOMI/S5P |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lanlan Rao Jian Xu Dmitry S. Efremenko Diego G. Loyola Adrian Doicu |
spellingShingle |
Lanlan Rao Jian Xu Dmitry S. Efremenko Diego G. Loyola Adrian Doicu Optimization of Aerosol Model Selection for TROPOMI/S5P Remote Sensing model selection aerosol retrievals TROPOMI/S5P |
author_facet |
Lanlan Rao Jian Xu Dmitry S. Efremenko Diego G. Loyola Adrian Doicu |
author_sort |
Lanlan Rao |
title |
Optimization of Aerosol Model Selection for TROPOMI/S5P |
title_short |
Optimization of Aerosol Model Selection for TROPOMI/S5P |
title_full |
Optimization of Aerosol Model Selection for TROPOMI/S5P |
title_fullStr |
Optimization of Aerosol Model Selection for TROPOMI/S5P |
title_full_unstemmed |
Optimization of Aerosol Model Selection for TROPOMI/S5P |
title_sort |
optimization of aerosol model selection for tropomi/s5p |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2021-06-01 |
description |
To retrieve aerosol properties from satellite measurements, micro-physical aerosol models have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that takes into account model uncertainties to retrieve the aerosol optical depth and layer height from synthetic and real TROPOMI O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>A band measurements. The results show that in case of insufficient information for an appropriate micro-physical model selection, the Bayesian algorithm improves the accuracy of the solution. |
topic |
model selection aerosol retrievals TROPOMI/S5P |
url |
https://www.mdpi.com/2072-4292/13/13/2489 |
work_keys_str_mv |
AT lanlanrao optimizationofaerosolmodelselectionfortropomis5p AT jianxu optimizationofaerosolmodelselectionfortropomis5p AT dmitrysefremenko optimizationofaerosolmodelselectionfortropomis5p AT diegogloyola optimizationofaerosolmodelselectionfortropomis5p AT adriandoicu optimizationofaerosolmodelselectionfortropomis5p |
_version_ |
1721298629802590208 |