Optimization of Aerosol Model Selection for TROPOMI/S5P

To retrieve aerosol properties from satellite measurements, micro-physical aerosol models have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that takes into account mode...

Full description

Bibliographic Details
Main Authors: Lanlan Rao, Jian Xu, Dmitry S. Efremenko, Diego G. Loyola, Adrian Doicu
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/13/2489
id doaj-57ab1aa3c21447a18e475f542df87337
record_format Article
spelling doaj-57ab1aa3c21447a18e475f542df873372021-07-15T15:44:14ZengMDPI AGRemote Sensing2072-42922021-06-01132489248910.3390/rs13132489Optimization of Aerosol Model Selection for TROPOMI/S5PLanlan Rao0Jian Xu1Dmitry S. Efremenko2Diego G. Loyola3Adrian Doicu4Remote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyRemote Sensing Technology Institute, German Aerospace Center (DLR), 82234 Oberpfaffenhofen, GermanyTo retrieve aerosol properties from satellite measurements, micro-physical aerosol models have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that takes into account model uncertainties to retrieve the aerosol optical depth and layer height from synthetic and real TROPOMI O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>A band measurements. The results show that in case of insufficient information for an appropriate micro-physical model selection, the Bayesian algorithm improves the accuracy of the solution.https://www.mdpi.com/2072-4292/13/13/2489model selectionaerosol retrievalsTROPOMI/S5P
collection DOAJ
language English
format Article
sources DOAJ
author Lanlan Rao
Jian Xu
Dmitry S. Efremenko
Diego G. Loyola
Adrian Doicu
spellingShingle Lanlan Rao
Jian Xu
Dmitry S. Efremenko
Diego G. Loyola
Adrian Doicu
Optimization of Aerosol Model Selection for TROPOMI/S5P
Remote Sensing
model selection
aerosol retrievals
TROPOMI/S5P
author_facet Lanlan Rao
Jian Xu
Dmitry S. Efremenko
Diego G. Loyola
Adrian Doicu
author_sort Lanlan Rao
title Optimization of Aerosol Model Selection for TROPOMI/S5P
title_short Optimization of Aerosol Model Selection for TROPOMI/S5P
title_full Optimization of Aerosol Model Selection for TROPOMI/S5P
title_fullStr Optimization of Aerosol Model Selection for TROPOMI/S5P
title_full_unstemmed Optimization of Aerosol Model Selection for TROPOMI/S5P
title_sort optimization of aerosol model selection for tropomi/s5p
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2021-06-01
description To retrieve aerosol properties from satellite measurements, micro-physical aerosol models have to be assumed. Due to the spatial and temporal inhomogeneity of aerosols, choosing an appropriate aerosol model is an important task. In this paper, we use a Bayesian algorithm that takes into account model uncertainties to retrieve the aerosol optical depth and layer height from synthetic and real TROPOMI O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>A band measurements. The results show that in case of insufficient information for an appropriate micro-physical model selection, the Bayesian algorithm improves the accuracy of the solution.
topic model selection
aerosol retrievals
TROPOMI/S5P
url https://www.mdpi.com/2072-4292/13/13/2489
work_keys_str_mv AT lanlanrao optimizationofaerosolmodelselectionfortropomis5p
AT jianxu optimizationofaerosolmodelselectionfortropomis5p
AT dmitrysefremenko optimizationofaerosolmodelselectionfortropomis5p
AT diegogloyola optimizationofaerosolmodelselectionfortropomis5p
AT adriandoicu optimizationofaerosolmodelselectionfortropomis5p
_version_ 1721298629802590208