Exploring Population Pharmacokinetic Modeling with Resampling Visualization

Background. In the last decade, population pharmacokinetic (PopPK) modeling has spread its influence in the whole process of drug research and development. While targeting the construction of the dose-concentration of a drug based on a population of patients, it shows great flexibility in dealing w...

Full description

Bibliographic Details
Main Authors: Fenghua Zuo, Jun Li, Xiaoyong Sun
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2014/585687
Description
Summary:Background. In the last decade, population pharmacokinetic (PopPK) modeling has spread its influence in the whole process of drug research and development. While targeting the construction of the dose-concentration of a drug based on a population of patients, it shows great flexibility in dealing with sparse samplings and unbalanced designs. The resampling approach has been considered an important statistical tool to assist in PopPK model validation by measuring the uncertainty of parameter estimates and evaluating the influence of individuals. Methods. The current work describes a graphical diagnostic approach for PopPK models by visualizing resampling statistics, such as case deletion and bootstrap. To examine resampling statistics, we adapted visual methods from multivariate analysis, parallel coordinate plots, and multidimensional scaling. Results. Multiple models were fitted, the information of parameter estimates and diagnostics were extracted, and the results were visualized. With careful scaling, the dependencies between different statistics are revealed. Using typical examples, the approach proved to have great capacity to identify influential outliers from the statistical perspective, which deserves special attention in a dosing regimen. Discussion. By combining static graphics with interactive graphics, we are able to explore the multidimensional data from an integrated and systematic perspective. Complementary to current approaches, our proposed method provides a new way for PopPK modeling analysis.
ISSN:2314-6133
2314-6141