On the growth of a class of Dirichlet series absolutely convergent in half-plane
In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty)$ and the growth of Dirichlet series $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2017-06-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1448 |
id |
doaj-577b57cbc8df4e5db4128d816846ef0f |
---|---|
record_format |
Article |
spelling |
doaj-577b57cbc8df4e5db4128d816846ef0f2020-11-25T03:10:48ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102017-06-0191637110.15330/cmp.9.1.63-711448On the growth of a class of Dirichlet series absolutely convergent in half-planeL.V. Kulyavetc'0O.M. Mulyava1Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineNational University of Food Technologies, 68 Volodymyrska str., 01601, Kyiv, UkraineIn terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty)$ and the growth of Dirichlet series $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\}$, $1\le j\le 2$, with the same abscissa of absolute convergence, if the coefficients $a_n$ are connected with the coefficients $a_{n,j}$ by correlation $$ \beta\left(\frac{\lambda_n}{\ln\,\left(|a_n|e^{A\lambda_n}\right)}\right)=(1+o(1)) \prod\limits_{j=1}^{m}\beta\left(\frac{\lambda_n} {\ln\,\left(|a_{n,j}|e^{A\lambda_n}\right)}\right)^{\omega_j},\ n\to\infty, $$ where $\omega_j>0$ $(1\le j\le m)$, $\sum\limits_{j=1}^{m}\omega_j=1$, and $\alpha$ is a positive slowly increasing function on $[x_0, +\infty)$.https://journals.pnu.edu.ua/index.php/cmp/article/view/1448dirichlet seriesgeneralized order. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
L.V. Kulyavetc' O.M. Mulyava |
spellingShingle |
L.V. Kulyavetc' O.M. Mulyava On the growth of a class of Dirichlet series absolutely convergent in half-plane Karpatsʹkì Matematičnì Publìkacìï dirichlet series generalized order. |
author_facet |
L.V. Kulyavetc' O.M. Mulyava |
author_sort |
L.V. Kulyavetc' |
title |
On the growth of a class of Dirichlet series absolutely convergent in half-plane |
title_short |
On the growth of a class of Dirichlet series absolutely convergent in half-plane |
title_full |
On the growth of a class of Dirichlet series absolutely convergent in half-plane |
title_fullStr |
On the growth of a class of Dirichlet series absolutely convergent in half-plane |
title_full_unstemmed |
On the growth of a class of Dirichlet series absolutely convergent in half-plane |
title_sort |
on the growth of a class of dirichlet series absolutely convergent in half-plane |
publisher |
Vasyl Stefanyk Precarpathian National University |
series |
Karpatsʹkì Matematičnì Publìkacìï |
issn |
2075-9827 2313-0210 |
publishDate |
2017-06-01 |
description |
In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty)$ and the growth of Dirichlet series $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\}$, $1\le j\le 2$, with the same abscissa of absolute convergence, if the coefficients $a_n$ are connected with the coefficients $a_{n,j}$ by correlation $$ \beta\left(\frac{\lambda_n}{\ln\,\left(|a_n|e^{A\lambda_n}\right)}\right)=(1+o(1)) \prod\limits_{j=1}^{m}\beta\left(\frac{\lambda_n} {\ln\,\left(|a_{n,j}|e^{A\lambda_n}\right)}\right)^{\omega_j},\ n\to\infty, $$ where $\omega_j>0$ $(1\le j\le m)$, $\sum\limits_{j=1}^{m}\omega_j=1$, and $\alpha$ is a positive slowly increasing function on $[x_0, +\infty)$. |
topic |
dirichlet series generalized order. |
url |
https://journals.pnu.edu.ua/index.php/cmp/article/view/1448 |
work_keys_str_mv |
AT lvkulyavetc onthegrowthofaclassofdirichletseriesabsolutelyconvergentinhalfplane AT ommulyava onthegrowthofaclassofdirichletseriesabsolutelyconvergentinhalfplane |
_version_ |
1724657133734068224 |