On the growth of a class of Dirichlet series absolutely convergent in half-plane

In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty)$ and the growth of Dirichlet series $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\...

Full description

Bibliographic Details
Main Authors: L.V. Kulyavetc', O.M. Mulyava
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2017-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1448
id doaj-577b57cbc8df4e5db4128d816846ef0f
record_format Article
spelling doaj-577b57cbc8df4e5db4128d816846ef0f2020-11-25T03:10:48ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102017-06-0191637110.15330/cmp.9.1.63-711448On the growth of a class of Dirichlet series absolutely convergent in half-planeL.V. Kulyavetc'0O.M. Mulyava1Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, UkraineNational University of Food Technologies, 68 Volodymyrska str., 01601, Kyiv, UkraineIn terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty)$ and the growth of Dirichlet series $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\}$, $1\le j\le 2$, with the same abscissa of absolute convergence, if the coefficients $a_n$ are connected with the coefficients $a_{n,j}$ by correlation $$ \beta\left(\frac{\lambda_n}{\ln\,\left(|a_n|e^{A\lambda_n}\right)}\right)=(1+o(1)) \prod\limits_{j=1}^{m}\beta\left(\frac{\lambda_n} {\ln\,\left(|a_{n,j}|e^{A\lambda_n}\right)}\right)^{\omega_j},\  n\to\infty, $$ where $\omega_j>0$ $(1\le j\le m)$, $\sum\limits_{j=1}^{m}\omega_j=1$, and $\alpha$ is a positive slowly increasing function on $[x_0, +\infty)$.https://journals.pnu.edu.ua/index.php/cmp/article/view/1448dirichlet seriesgeneralized order.
collection DOAJ
language English
format Article
sources DOAJ
author L.V. Kulyavetc'
O.M. Mulyava
spellingShingle L.V. Kulyavetc'
O.M. Mulyava
On the growth of a class of Dirichlet series absolutely convergent in half-plane
Karpatsʹkì Matematičnì Publìkacìï
dirichlet series
generalized order.
author_facet L.V. Kulyavetc'
O.M. Mulyava
author_sort L.V. Kulyavetc'
title On the growth of a class of Dirichlet series absolutely convergent in half-plane
title_short On the growth of a class of Dirichlet series absolutely convergent in half-plane
title_full On the growth of a class of Dirichlet series absolutely convergent in half-plane
title_fullStr On the growth of a class of Dirichlet series absolutely convergent in half-plane
title_full_unstemmed On the growth of a class of Dirichlet series absolutely convergent in half-plane
title_sort on the growth of a class of dirichlet series absolutely convergent in half-plane
publisher Vasyl Stefanyk Precarpathian National University
series Karpatsʹkì Matematičnì Publìkacìï
issn 2075-9827
2313-0210
publishDate 2017-06-01
description In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty)$ and the growth of Dirichlet series $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\}$, $1\le j\le 2$, with the same abscissa of absolute convergence, if the coefficients $a_n$ are connected with the coefficients $a_{n,j}$ by correlation $$ \beta\left(\frac{\lambda_n}{\ln\,\left(|a_n|e^{A\lambda_n}\right)}\right)=(1+o(1)) \prod\limits_{j=1}^{m}\beta\left(\frac{\lambda_n} {\ln\,\left(|a_{n,j}|e^{A\lambda_n}\right)}\right)^{\omega_j},\  n\to\infty, $$ where $\omega_j>0$ $(1\le j\le m)$, $\sum\limits_{j=1}^{m}\omega_j=1$, and $\alpha$ is a positive slowly increasing function on $[x_0, +\infty)$.
topic dirichlet series
generalized order.
url https://journals.pnu.edu.ua/index.php/cmp/article/view/1448
work_keys_str_mv AT lvkulyavetc onthegrowthofaclassofdirichletseriesabsolutelyconvergentinhalfplane
AT ommulyava onthegrowthofaclassofdirichletseriesabsolutelyconvergentinhalfplane
_version_ 1724657133734068224