A Comparison of Proteins Expressed between Human and Mouse Adipose-Derived Mesenchymal Stem Cells by a Proteome Analysis through Liquid Chromatography with Tandem Mass Spectrometry

Adipose-derived mesenchymal stem cells (ADSCs) have become a common cell source for cell transplantation therapy. Clinical studies have used ADSCs to develop treatments for tissue fibrosis, such as liver cirrhosis and pulmonary fibroma. The need to examine and compare basic research data using clini...

Full description

Bibliographic Details
Main Authors: Saifun Nahar, Yoshiki Nakashima, Chika Miyagi-Shiohira, Takao Kinjo, Naoya Kobayashi, Issei Saitoh, Masami Watanabe, Hirofumi Noguchi, Jiro Fujita
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/19/11/3497
Description
Summary:Adipose-derived mesenchymal stem cells (ADSCs) have become a common cell source for cell transplantation therapy. Clinical studies have used ADSCs to develop treatments for tissue fibrosis, such as liver cirrhosis and pulmonary fibroma. The need to examine and compare basic research data using clinical research data derived from mice and humans is expected to increase in the future. Here, to better characterize the cells, the protein components expressed by human ADSCs used for treatment, and mouse ADSCs used for research, were comprehensively analyzed by liquid chromatography with tandem mass spectrometry. We found that 92% (401 type proteins) of the proteins expressed by ADSCs in humans and mice were consistent. When classified by the protein functions in a gene ontology analysis, the items that differed by >5% between human and mouse ADSCs were “biological adhesion, locomotion„ in biological processes, “plasma membrane„ in cellular components, and “antioxidant activity, molecular transducer activity„ in molecular functions. Most of the listed proteins were sensitive to cell isolation processes. These results show that the proteins expressed by human and murine ADSCs showed a high degree of correlation.
ISSN:1422-0067