TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery
Abstract Target identification and prioritisation are prominent first steps in modern drug discovery. Traditionally, individual scientists have used their expertise to manually interpret scientific literature and prioritise opportunities. However, increasing publication rates and the wider routine c...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-08-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-021-94897-9 |
id |
doaj-5772d4e7752d418392e61c47ac3c588d |
---|---|
record_format |
Article |
spelling |
doaj-5772d4e7752d418392e61c47ac3c588d2021-08-08T11:23:15ZengNature Publishing GroupScientific Reports2045-23222021-08-0111111810.1038/s41598-021-94897-9TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discoveryGuillermo Serrano Nájera0David Narganes Carlón1Daniel J. Crowther2Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDivision of Cell and Developmental Biology, School of Life Sciences, University of DundeeExscientia Ltd, Dundee OneAbstract Target identification and prioritisation are prominent first steps in modern drug discovery. Traditionally, individual scientists have used their expertise to manually interpret scientific literature and prioritise opportunities. However, increasing publication rates and the wider routine coverage of human genes by omic-scale research make it difficult to maintain meaningful overviews from which to identify promising new trends. Here we propose an automated yet flexible pipeline that identifies trends in the scientific corpus which align with the specific interests of a researcher and facilitate an initial prioritisation of opportunities. Using a procedure based on co-citation networks and machine learning, genes and diseases are first parsed from PubMed articles using a novel named entity recognition system together with publication date and supporting information. Then recurrent neural networks are trained to predict the publication dynamics of all human genes. For a user-defined therapeutic focus, genes generating more publications or citations are identified as high-interest targets. We also used topic detection routines to help understand why a gene is trendy and implement a system to propose the most prominent review articles for a potential target. This TrendyGenes pipeline detects emerging targets and pathways and provides a new way to explore the literature for individual researchers, pharmaceutical companies and funding agencies.https://doi.org/10.1038/s41598-021-94897-9 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Guillermo Serrano Nájera David Narganes Carlón Daniel J. Crowther |
spellingShingle |
Guillermo Serrano Nájera David Narganes Carlón Daniel J. Crowther TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery Scientific Reports |
author_facet |
Guillermo Serrano Nájera David Narganes Carlón Daniel J. Crowther |
author_sort |
Guillermo Serrano Nájera |
title |
TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery |
title_short |
TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery |
title_full |
TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery |
title_fullStr |
TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery |
title_full_unstemmed |
TrendyGenes, a computational pipeline for the detection of literature trends in academia and drug discovery |
title_sort |
trendygenes, a computational pipeline for the detection of literature trends in academia and drug discovery |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2021-08-01 |
description |
Abstract Target identification and prioritisation are prominent first steps in modern drug discovery. Traditionally, individual scientists have used their expertise to manually interpret scientific literature and prioritise opportunities. However, increasing publication rates and the wider routine coverage of human genes by omic-scale research make it difficult to maintain meaningful overviews from which to identify promising new trends. Here we propose an automated yet flexible pipeline that identifies trends in the scientific corpus which align with the specific interests of a researcher and facilitate an initial prioritisation of opportunities. Using a procedure based on co-citation networks and machine learning, genes and diseases are first parsed from PubMed articles using a novel named entity recognition system together with publication date and supporting information. Then recurrent neural networks are trained to predict the publication dynamics of all human genes. For a user-defined therapeutic focus, genes generating more publications or citations are identified as high-interest targets. We also used topic detection routines to help understand why a gene is trendy and implement a system to propose the most prominent review articles for a potential target. This TrendyGenes pipeline detects emerging targets and pathways and provides a new way to explore the literature for individual researchers, pharmaceutical companies and funding agencies. |
url |
https://doi.org/10.1038/s41598-021-94897-9 |
work_keys_str_mv |
AT guillermoserranonajera trendygenesacomputationalpipelineforthedetectionofliteraturetrendsinacademiaanddrugdiscovery AT davidnarganescarlon trendygenesacomputationalpipelineforthedetectionofliteraturetrendsinacademiaanddrugdiscovery AT danieljcrowther trendygenesacomputationalpipelineforthedetectionofliteraturetrendsinacademiaanddrugdiscovery |
_version_ |
1721216050452758528 |