Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>

Thin antimony layers adsorbed on bismuth selenide (<inline-formula><math display="inline"><semantics><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></s...

Full description

Bibliographic Details
Main Authors: Kris Holtgrewe, Conor Hogan, Simone Sanna
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/7/1763
id doaj-5755672b28154d9bbc2ea74afa1b746d
record_format Article
spelling doaj-5755672b28154d9bbc2ea74afa1b746d2021-04-02T23:05:37ZengMDPI AGMaterials1996-19442021-04-01141763176310.3390/ma14071763Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>Kris Holtgrewe0Conor Hogan1Simone Sanna2Institut für Theoretische Physik, Justus-Liebig-Universität Gießen, 35392 Gießen, GermanyIstituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Roma, ItalyInstitut für Theoretische Physik, Justus-Liebig-Universität Gießen, 35392 Gießen, GermanyThin antimony layers adsorbed on bismuth selenide (<inline-formula><math display="inline"><semantics><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>) present an exciting topological insulator system. Much recent effort has been made to understand the synthesis and electronic properties of the heterostructure, particularly the migration of the topological surface states under adsorption. However, the intertwinement of the topological surface states of the pristine <inline-formula><math display="inline"><semantics><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> substrate with the Sb adlayer remains unclear. In this theoretical work, we apply density functional theory (DFT) to model heterostructures of single and double atomic layers of Sb on a bismuth selenide substrate. We thereby discuss established and alternative structural models, as well as the hybridization of topological surface states with the Sb states. Concerning the geometry, we reveal the possibility of structures with inverted Sb layers which are energetically close to the established ones. The formation energy differences are below 10 meV/atom. Concerning the hybridization, we trace the band structure evolution as a function of the adlayer-substrate distance. By following changes in the connection between the Kramers pairs, we extract a series of topological phase transitions. This allows us to explain the origin of the complex band structure, and ultimately complete our knowledge about this peculiar system.https://www.mdpi.com/1996-1944/14/7/1763surface sciencetopological insulatortopological surface statestopological phase transitionvan der Waalshetero structure
collection DOAJ
language English
format Article
sources DOAJ
author Kris Holtgrewe
Conor Hogan
Simone Sanna
spellingShingle Kris Holtgrewe
Conor Hogan
Simone Sanna
Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>
Materials
surface science
topological insulator
topological surface states
topological phase transition
van der Waals
hetero structure
author_facet Kris Holtgrewe
Conor Hogan
Simone Sanna
author_sort Kris Holtgrewe
title Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>
title_short Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>
title_full Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>
title_fullStr Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>
title_full_unstemmed Evolution of Topological Surface States Following Sb Layer Adsorption on <em>Bi</em><sub>2</sub><em>Se</em><sub>3</sub>
title_sort evolution of topological surface states following sb layer adsorption on <em>bi</em><sub>2</sub><em>se</em><sub>3</sub>
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2021-04-01
description Thin antimony layers adsorbed on bismuth selenide (<inline-formula><math display="inline"><semantics><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>) present an exciting topological insulator system. Much recent effort has been made to understand the synthesis and electronic properties of the heterostructure, particularly the migration of the topological surface states under adsorption. However, the intertwinement of the topological surface states of the pristine <inline-formula><math display="inline"><semantics><mrow><msub><mi>Bi</mi><mn>2</mn></msub><msub><mi>Se</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> substrate with the Sb adlayer remains unclear. In this theoretical work, we apply density functional theory (DFT) to model heterostructures of single and double atomic layers of Sb on a bismuth selenide substrate. We thereby discuss established and alternative structural models, as well as the hybridization of topological surface states with the Sb states. Concerning the geometry, we reveal the possibility of structures with inverted Sb layers which are energetically close to the established ones. The formation energy differences are below 10 meV/atom. Concerning the hybridization, we trace the band structure evolution as a function of the adlayer-substrate distance. By following changes in the connection between the Kramers pairs, we extract a series of topological phase transitions. This allows us to explain the origin of the complex band structure, and ultimately complete our knowledge about this peculiar system.
topic surface science
topological insulator
topological surface states
topological phase transition
van der Waals
hetero structure
url https://www.mdpi.com/1996-1944/14/7/1763
work_keys_str_mv AT krisholtgrewe evolutionoftopologicalsurfacestatesfollowingsblayeradsorptiononembiemsub2subemseemsub3sub
AT conorhogan evolutionoftopologicalsurfacestatesfollowingsblayeradsorptiononembiemsub2subemseemsub3sub
AT simonesanna evolutionoftopologicalsurfacestatesfollowingsblayeradsorptiononembiemsub2subemseemsub3sub
_version_ 1721544496029630464