Reliable identification of deep sulcal pits: the effects of scan session, scanner, and surface extraction tool.

Sulcal pit analysis has been providing novel insights into brain function and development. The purpose of this study was to evaluate the reliability of sulcal pit extraction with respect to the effects of scan session, scanner, and surface extraction tool. Five subjects were scanned 4 times at 3 MRI...

Full description

Bibliographic Details
Main Authors: Kiho Im, Jong-Min Lee, Seun Jeon, Jong-Heon Kim, Sang Won Seo, Duk L Na, P Ellen Grant
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3538732?pdf=render
Description
Summary:Sulcal pit analysis has been providing novel insights into brain function and development. The purpose of this study was to evaluate the reliability of sulcal pit extraction with respect to the effects of scan session, scanner, and surface extraction tool. Five subjects were scanned 4 times at 3 MRI centers and other 5 subjects were scanned 3 times at 2 MRI centers, including 1 test-retest session. Sulcal pits were extracted on the white matter surfaces reconstructed with both Montreal Neurological Institute and Freesurfer pipelines. We estimated similarity of the presence of sulcal pits having a maximum value of 1 and their spatial difference within the same subject. The tests showed high similarity of the sulcal pit presence and low spatial difference. The similarity was more than 0.90 and the spatial difference was less than 1.7 mm in most cases according to different scan sessions or scanners, and more than 0.85 and about 2.0 mm across surface extraction tools. The reliability of sulcal pit extraction was more affected by the image processing-related factors than the scan session or scanner factors. Moreover, the similarity of sulcal pit distribution appeared to be largely influenced by the presence or absence of the sulcal pits on the shallow and small folds. We suggest that our sulcal pit extraction from MRI is highly reliable and could be useful for clinical applications as an imaging biomarker.
ISSN:1932-6203