Uma geometria tetradimensional euclidiana para os fenômenos relativistas: cinemática

O objetivo geral deste artigo é abrir uma nova linha de discussão no ensino da relatividade do movimento moderna, oferecendo uma abordagem geométrica euclidiana em quatro dimensões, que adota o tempo próprio como quarto eixo cartesiano. Essa iniciativa se deve ao fato de que são identificadas sever...

Full description

Bibliographic Details
Main Author: Otávio Fossa de Almeida
Format: Article
Language:Spanish
Published: Universidade Federal de Santa Catarina (UFSC) 2021-09-01
Series:Caderno Brasileiro de Ensino de Física
Subjects:
Online Access:https://periodicos.ufsc.br/index.php/fisica/article/view/77562
Description
Summary:O objetivo geral deste artigo é abrir uma nova linha de discussão no ensino da relatividade do movimento moderna, oferecendo uma abordagem geométrica euclidiana em quatro dimensões, que adota o tempo próprio como quarto eixo cartesiano. Essa iniciativa se deve ao fato de que são identificadas severas barreiras às tentativas, quando necessárias, de transposição dos fenômenos relativistas para a educação básica, principalmente porque a Teoria da Relatividade Especial (TRE) é muito abstrata e as Teorias do Espaço-tempo (TET) minkowskiana e da Relatividade Geral (TRG) exigem uma geometria não-euclidiana. Nesse contexto, essa nova geometria é focada, sobremaneira, na formação de professores, que são os artífices dessas transposições, e possui o objetivo específico de explorar sua funcionalidade em descrever exclusivamente a cinemática relativista, sem definir uma grandeza para descrever a mudança do movimento, discutindo os problemas da dilatação do tempo, da composição de movimentos, da contração do comprimento e dos “paradoxos” dos gêmeos, da contração do espaço e do disco rígido girante. Esse objetivo específico é importante porque estes seis problemas não só são historicamente relevantes, como também servem como laboratório para testar a validade da nova geometria, que, apesar de equivalente à TRE e à TET, possui sua coesão interna.
ISSN:1677-2334
2175-7941