Asymptotic renormalization in flat space: symplectic potential and charges of electromagnetism

Abstract We present a systematic procedure to renormalize the symplectic potential of the electromagnetic field at null infinity in Minkowski space. We work in D ≥ 6 spacetime dimensions as a toy model of General Relativity in D ≥ 4 dimensions. Total variation counterterms as well as corner countert...

Full description

Bibliographic Details
Main Authors: Laurent Freidel, Florian Hopfmüller, Aldo Riello
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP10(2019)126
Description
Summary:Abstract We present a systematic procedure to renormalize the symplectic potential of the electromagnetic field at null infinity in Minkowski space. We work in D ≥ 6 spacetime dimensions as a toy model of General Relativity in D ≥ 4 dimensions. Total variation counterterms as well as corner counterterms are both subtracted from the symplectic potential to make it finite. These counterterms affect respectively the action functional and the Hamiltonian symmetry generators. The counterterms are local and universal. We analyze the asymptotic equations of motion and identify the free data associated with the renormalized canonical structure along a null characteristic. This allows the construction of the asymptotic renormalized charges whose Ward identity gives the QED soft theorem, supporting the physical viability of the renormalization procedure. We touch upon how to extend our analysis to the presence of logarithmic anomalies, and upon how our procedure compares to holographic renormalization.
ISSN:1029-8479