(1,1)-Coherent Pairs on the Unit Circle
A pair (𝒰,𝒱) of Hermitian regular linear functionals on the unit circle is said to be a (1,1)-coherent pair if their corresponding sequences of monic orthogonal polynomials {ϕn(x)}n≥0 and {ψn(x)}n≥0 satisfy ϕn[1](z)+anϕn-1[1](z)=ψn(z)+bnψn-1(z), an≠0, n≥1, where ϕn[1](z)=ϕn+1′(z)/(n+1). In this cont...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/307974 |
id |
doaj-570da3aee52b4d9681ea7b8b063d428e |
---|---|
record_format |
Article |
spelling |
doaj-570da3aee52b4d9681ea7b8b063d428e2020-11-24T21:20:17ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/307974307974(1,1)-Coherent Pairs on the Unit CircleLuis Garza0Francisco Marcellán1Natalia C. Pinzón-Cortés2Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, 28045 Colima, COL, MexicoDepartamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, SpainDepartamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, SpainA pair (𝒰,𝒱) of Hermitian regular linear functionals on the unit circle is said to be a (1,1)-coherent pair if their corresponding sequences of monic orthogonal polynomials {ϕn(x)}n≥0 and {ψn(x)}n≥0 satisfy ϕn[1](z)+anϕn-1[1](z)=ψn(z)+bnψn-1(z), an≠0, n≥1, where ϕn[1](z)=ϕn+1′(z)/(n+1). In this contribution, we consider the cases when 𝒰 is the linear functional associated with the Lebesgue and Bernstein-Szegő measures, respectively, and we obtain a classification of the situations where 𝒱 is associated with either a positive nontrivial measure or its rational spectral transformation.http://dx.doi.org/10.1155/2013/307974 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Luis Garza Francisco Marcellán Natalia C. Pinzón-Cortés |
spellingShingle |
Luis Garza Francisco Marcellán Natalia C. Pinzón-Cortés (1,1)-Coherent Pairs on the Unit Circle Abstract and Applied Analysis |
author_facet |
Luis Garza Francisco Marcellán Natalia C. Pinzón-Cortés |
author_sort |
Luis Garza |
title |
(1,1)-Coherent Pairs on the Unit Circle |
title_short |
(1,1)-Coherent Pairs on the Unit Circle |
title_full |
(1,1)-Coherent Pairs on the Unit Circle |
title_fullStr |
(1,1)-Coherent Pairs on the Unit Circle |
title_full_unstemmed |
(1,1)-Coherent Pairs on the Unit Circle |
title_sort |
(1,1)-coherent pairs on the unit circle |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2013-01-01 |
description |
A pair (𝒰,𝒱) of Hermitian regular linear functionals on the unit circle is said to be a (1,1)-coherent pair if their corresponding sequences of monic orthogonal polynomials {ϕn(x)}n≥0 and {ψn(x)}n≥0 satisfy ϕn[1](z)+anϕn-1[1](z)=ψn(z)+bnψn-1(z), an≠0, n≥1, where ϕn[1](z)=ϕn+1′(z)/(n+1). In this contribution, we consider the cases when 𝒰
is the linear functional associated with the Lebesgue and Bernstein-Szegő measures, respectively, and we obtain a classification of the situations where 𝒱 is associated with either a positive nontrivial measure or its rational spectral transformation. |
url |
http://dx.doi.org/10.1155/2013/307974 |
work_keys_str_mv |
AT luisgarza 11coherentpairsontheunitcircle AT franciscomarcellan 11coherentpairsontheunitcircle AT nataliacpinzoncortes 11coherentpairsontheunitcircle |
_version_ |
1726003045026758656 |