Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data
In this work, a simulation methodology, whose inputs are Conductive Atomic Force Microscope (CAFM) experimental data, is proposed to evaluate the impact of nanoscale variability sources related to the polycrystallization of high-k dielectrics (i.e., oxide thickness, t<sub>ox</sub>, and c...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9462835/ |
id |
doaj-56b7601c4aed4bf89520d780db262f12 |
---|---|
record_format |
Article |
spelling |
doaj-56b7601c4aed4bf89520d780db262f122021-06-29T23:00:30ZengIEEEIEEE Access2169-35362021-01-019905689057610.1109/ACCESS.2021.30904729462835Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input DataA. Ruiz0https://orcid.org/0000-0002-2475-7353C. Couso1https://orcid.org/0000-0003-4757-2439N. Seoane2https://orcid.org/0000-0003-0973-461XM. Porti3https://orcid.org/0000-0001-7438-3823A. J. Garcia-Loureiro4https://orcid.org/0000-0003-0574-1513M. Nafria5https://orcid.org/0000-0002-9549-2890Electronic Engineering Department, Universitat Autònoma de Barcelona, Barcelona, SpainElectronic Engineering Department, Universitat Autònoma de Barcelona, Barcelona, SpainCITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, SpainElectronic Engineering Department, Universitat Autònoma de Barcelona, Barcelona, SpainCITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, SpainElectronic Engineering Department, Universitat Autònoma de Barcelona, Barcelona, SpainIn this work, a simulation methodology, whose inputs are Conductive Atomic Force Microscope (CAFM) experimental data, is proposed to evaluate the impact of nanoscale variability sources related to the polycrystallization of high-k dielectrics (i.e., oxide thickness, t<sub>ox</sub>, and charge density, <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula>, fluctuations in the nanometer range) on the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) variability. To simulate this variability, a Thickness And Charge MAp Generator (TACMAG) has been developed and used in combination with an in-house-built 3D device simulator (VENDES). From CAFM experimental data (topography and current) obtained on a small area of a given polycrystalline dielectric, the TACMAG generates a high amount of t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> configurations of the gate dielectric, with identical statistical characteristics to those experimentally measured. These dielectrics are then introduced into the device simulator, with which the impact of the t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> fluctuations in the dielectric on the variability of MOSFETs (i.e., threshold voltage) is analyzed. Finally, the impact of different nanoscale parameters, such as the Grain size and Grain Boundaries depth (of polycrystalline dielectrics) on such variability has been evaluated.https://ieeexplore.ieee.org/document/9462835/CAFMhigh-kMOSFET variabilitypolycrystalline dielectricdefect density3D device simulations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Ruiz C. Couso N. Seoane M. Porti A. J. Garcia-Loureiro M. Nafria |
spellingShingle |
A. Ruiz C. Couso N. Seoane M. Porti A. J. Garcia-Loureiro M. Nafria Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data IEEE Access CAFM high-k MOSFET variability polycrystalline dielectric defect density 3D device simulations |
author_facet |
A. Ruiz C. Couso N. Seoane M. Porti A. J. Garcia-Loureiro M. Nafria |
author_sort |
A. Ruiz |
title |
Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data |
title_short |
Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data |
title_full |
Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data |
title_fullStr |
Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data |
title_full_unstemmed |
Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data |
title_sort |
methodology for the simulation of the variability of mosfets with polycrystalline high-k dielectrics using cafm input data |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2021-01-01 |
description |
In this work, a simulation methodology, whose inputs are Conductive Atomic Force Microscope (CAFM) experimental data, is proposed to evaluate the impact of nanoscale variability sources related to the polycrystallization of high-k dielectrics (i.e., oxide thickness, t<sub>ox</sub>, and charge density, <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula>, fluctuations in the nanometer range) on the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) variability. To simulate this variability, a Thickness And Charge MAp Generator (TACMAG) has been developed and used in combination with an in-house-built 3D device simulator (VENDES). From CAFM experimental data (topography and current) obtained on a small area of a given polycrystalline dielectric, the TACMAG generates a high amount of t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> configurations of the gate dielectric, with identical statistical characteristics to those experimentally measured. These dielectrics are then introduced into the device simulator, with which the impact of the t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> fluctuations in the dielectric on the variability of MOSFETs (i.e., threshold voltage) is analyzed. Finally, the impact of different nanoscale parameters, such as the Grain size and Grain Boundaries depth (of polycrystalline dielectrics) on such variability has been evaluated. |
topic |
CAFM high-k MOSFET variability polycrystalline dielectric defect density 3D device simulations |
url |
https://ieeexplore.ieee.org/document/9462835/ |
work_keys_str_mv |
AT aruiz methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata AT ccouso methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata AT nseoane methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata AT mporti methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata AT ajgarcialoureiro methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata AT mnafria methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata |
_version_ |
1721354205382311936 |