Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data

In this work, a simulation methodology, whose inputs are Conductive Atomic Force Microscope (CAFM) experimental data, is proposed to evaluate the impact of nanoscale variability sources related to the polycrystallization of high-k dielectrics (i.e., oxide thickness, t<sub>ox</sub>, and c...

Full description

Bibliographic Details
Main Authors: A. Ruiz, C. Couso, N. Seoane, M. Porti, A. J. Garcia-Loureiro, M. Nafria
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9462835/
id doaj-56b7601c4aed4bf89520d780db262f12
record_format Article
spelling doaj-56b7601c4aed4bf89520d780db262f122021-06-29T23:00:30ZengIEEEIEEE Access2169-35362021-01-019905689057610.1109/ACCESS.2021.30904729462835Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input DataA. Ruiz0https://orcid.org/0000-0002-2475-7353C. Couso1https://orcid.org/0000-0003-4757-2439N. Seoane2https://orcid.org/0000-0003-0973-461XM. Porti3https://orcid.org/0000-0001-7438-3823A. J. Garcia-Loureiro4https://orcid.org/0000-0003-0574-1513M. Nafria5https://orcid.org/0000-0002-9549-2890Electronic Engineering Department, Universitat Aut&#x00F2;noma de Barcelona, Barcelona, SpainElectronic Engineering Department, Universitat Aut&#x00F2;noma de Barcelona, Barcelona, SpainCITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, SpainElectronic Engineering Department, Universitat Aut&#x00F2;noma de Barcelona, Barcelona, SpainCITIUS, Universidade de Santiago de Compostela, Santiago de Compostela, SpainElectronic Engineering Department, Universitat Aut&#x00F2;noma de Barcelona, Barcelona, SpainIn this work, a simulation methodology, whose inputs are Conductive Atomic Force Microscope (CAFM) experimental data, is proposed to evaluate the impact of nanoscale variability sources related to the polycrystallization of high-k dielectrics (i.e., oxide thickness, t<sub>ox</sub>, and charge density, <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula>, fluctuations in the nanometer range) on the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) variability. To simulate this variability, a Thickness And Charge MAp Generator (TACMAG) has been developed and used in combination with an in-house-built 3D device simulator (VENDES). From CAFM experimental data (topography and current) obtained on a small area of a given polycrystalline dielectric, the TACMAG generates a high amount of t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> configurations of the gate dielectric, with identical statistical characteristics to those experimentally measured. These dielectrics are then introduced into the device simulator, with which the impact of the t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> fluctuations in the dielectric on the variability of MOSFETs (i.e., threshold voltage) is analyzed. Finally, the impact of different nanoscale parameters, such as the Grain size and Grain Boundaries depth (of polycrystalline dielectrics) on such variability has been evaluated.https://ieeexplore.ieee.org/document/9462835/CAFMhigh-kMOSFET variabilitypolycrystalline dielectricdefect density3D device simulations
collection DOAJ
language English
format Article
sources DOAJ
author A. Ruiz
C. Couso
N. Seoane
M. Porti
A. J. Garcia-Loureiro
M. Nafria
spellingShingle A. Ruiz
C. Couso
N. Seoane
M. Porti
A. J. Garcia-Loureiro
M. Nafria
Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data
IEEE Access
CAFM
high-k
MOSFET variability
polycrystalline dielectric
defect density
3D device simulations
author_facet A. Ruiz
C. Couso
N. Seoane
M. Porti
A. J. Garcia-Loureiro
M. Nafria
author_sort A. Ruiz
title Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data
title_short Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data
title_full Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data
title_fullStr Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data
title_full_unstemmed Methodology for the Simulation of the Variability of MOSFETs With Polycrystalline High-k Dielectrics Using CAFM Input Data
title_sort methodology for the simulation of the variability of mosfets with polycrystalline high-k dielectrics using cafm input data
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2021-01-01
description In this work, a simulation methodology, whose inputs are Conductive Atomic Force Microscope (CAFM) experimental data, is proposed to evaluate the impact of nanoscale variability sources related to the polycrystallization of high-k dielectrics (i.e., oxide thickness, t<sub>ox</sub>, and charge density, <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula>, fluctuations in the nanometer range) on the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) variability. To simulate this variability, a Thickness And Charge MAp Generator (TACMAG) has been developed and used in combination with an in-house-built 3D device simulator (VENDES). From CAFM experimental data (topography and current) obtained on a small area of a given polycrystalline dielectric, the TACMAG generates a high amount of t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> configurations of the gate dielectric, with identical statistical characteristics to those experimentally measured. These dielectrics are then introduced into the device simulator, with which the impact of the t<sub>ox</sub> and <inline-formula> <tex-math notation="LaTeX">$\rho _{\mathrm {ox}}$ </tex-math></inline-formula> fluctuations in the dielectric on the variability of MOSFETs (i.e., threshold voltage) is analyzed. Finally, the impact of different nanoscale parameters, such as the Grain size and Grain Boundaries depth (of polycrystalline dielectrics) on such variability has been evaluated.
topic CAFM
high-k
MOSFET variability
polycrystalline dielectric
defect density
3D device simulations
url https://ieeexplore.ieee.org/document/9462835/
work_keys_str_mv AT aruiz methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata
AT ccouso methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata
AT nseoane methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata
AT mporti methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata
AT ajgarcialoureiro methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata
AT mnafria methodologyforthesimulationofthevariabilityofmosfetswithpolycrystallinehighkdielectricsusingcafminputdata
_version_ 1721354205382311936