Oxygen as a Virulence Determinant in Polymicrobial Infections

Infections caused by multiple organisms, or polymicrobial infections, are likely more common than is broadly appreciated. Interaction among microbial communities (and with their host) can change the infection landscape by subverting immunity, providing nutrients and inhibiting competing microbes. St...

Full description

Bibliographic Details
Main Authors: Elizabeth M. Selleck, Michael S. Gilmore
Format: Article
Language:English
Published: American Society for Microbiology 2016-08-01
Series:mBio
Online Access:http://mbio.asm.org/cgi/content/full/7/4/e01249-16
Description
Summary:Infections caused by multiple organisms, or polymicrobial infections, are likely more common than is broadly appreciated. Interaction among microbial communities (and with their host) can change the infection landscape by subverting immunity, providing nutrients and inhibiting competing microbes. Stacy et al. (A. Stacy, D. Fleming, R. J. Lamont, K. P. Rumbaugh, and M. Whiteley, mBio 7:e00782-16, 2016, http://dx.doi.org/10.1128/mBio.00782-16) described a novel mechanism that results in synergistic growth of oral microbes Aggregatibacter actinomycetemcomitans and Streptococcus gordonii. The authors used whole-genome fitness profiling by transposon sequencing (Tn-seq) to identify genes differentially required for growth in vitro versus in a mono- or coinfection in a thigh abscess model. They found that coinfection with S. gordonii allowed A. actinomycetemcomitans to shift from an anaerobic to an aerobic mode of growth. This shift involved the production of a terminal electron acceptor H2O2 by S. gordonii and increased A. actinomycetemcomitans persistence—an interaction termed “cross-respiration.”
ISSN:2150-7511