Summary: | <p>The efficiency of artificial satellite equipment, essentially, depends on its temperature condition, which in the case of low-Earth orbit varies quite widely. The satellite temperature changes because of the fact that along with a portion of the orbit where the satellite perceives heat flows, caused by solar radiation directly incident on its surface and solar radiation, reflected from the Earth's surface; in general cases of the low earth orbit there is its shaded portion where the satellite receives only a relatively low intensive self-radiation of the Earth. The level of possible values of satellite temperature at different portions of low earth orbit can be estimated by the equilibrium temperature determined from the balance equation of heat flows, perceived and radiated by its surface.</p><p>The analysis of heat flows, which act on the surface of an artificial satellite of conditional spherical shape, allows us to obtain the dependences, in order to find a satellite equilibrium temperature at different heights of its position above Earth's surface and an angle between the directions from the center of the Earth towards the Sun, and the satellite as it moves out of the shadow of the Earth and at different height of its position at the shaded portion of the orbit as well. These dependencies are used for graphing to show the changes of the equilibrium temperature of the low-Earth orbiting satellite.</p><p>The presented technique allows us to evaluate the possible range of temperature change of the low-Earth orbiting satellite.</p>
|