Oscillation and nonoscillation of perturbed higher order Euler-type differential equations

Oscillatory properties of even order self-adjoint linear differential equations in the form $$ \sum_{k=0}^{n} (-1)^k\nu_k\left(\frac{y^{(k)}}{t^{2n-2k-\alpha}}\right)^{(k)} =(-1)^m\left(q_m(t)y^{(m)}\right)^{(m)},\; \nu_n:=1, $$ where $m \in \{0, 1\}$, $\alpha \not\in \{1, 3, \dots , 2n-1\}$ and $...

Full description

Bibliographic Details
Main Author: Simona Fišnarová
Format: Article
Language:English
Published: University of Szeged 2005-06-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=221
id doaj-56a5c03978504a12800ce742d1bab67d
record_format Article
spelling doaj-56a5c03978504a12800ce742d1bab67d2021-07-14T07:21:19ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752005-06-0120051312110.14232/ejqtde.2005.1.13221Oscillation and nonoscillation of perturbed higher order Euler-type differential equationsSimona Fišnarová0Mendel University in Brno, Brno, Czech RepublicOscillatory properties of even order self-adjoint linear differential equations in the form $$ \sum_{k=0}^{n} (-1)^k\nu_k\left(\frac{y^{(k)}}{t^{2n-2k-\alpha}}\right)^{(k)} =(-1)^m\left(q_m(t)y^{(m)}\right)^{(m)},\; \nu_n:=1, $$ where $m \in \{0, 1\}$, $\alpha \not\in \{1, 3, \dots , 2n-1\}$ and $\nu_0, \dots, \nu_{n-1},$ are real constants satisfying certain conditions, are investigated. In particular, the case when $q_m(t)=\frac{\beta}{t^{2n-2m-\alpha}\ln^2 t }$ is studied.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=221
collection DOAJ
language English
format Article
sources DOAJ
author Simona Fišnarová
spellingShingle Simona Fišnarová
Oscillation and nonoscillation of perturbed higher order Euler-type differential equations
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Simona Fišnarová
author_sort Simona Fišnarová
title Oscillation and nonoscillation of perturbed higher order Euler-type differential equations
title_short Oscillation and nonoscillation of perturbed higher order Euler-type differential equations
title_full Oscillation and nonoscillation of perturbed higher order Euler-type differential equations
title_fullStr Oscillation and nonoscillation of perturbed higher order Euler-type differential equations
title_full_unstemmed Oscillation and nonoscillation of perturbed higher order Euler-type differential equations
title_sort oscillation and nonoscillation of perturbed higher order euler-type differential equations
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2005-06-01
description Oscillatory properties of even order self-adjoint linear differential equations in the form $$ \sum_{k=0}^{n} (-1)^k\nu_k\left(\frac{y^{(k)}}{t^{2n-2k-\alpha}}\right)^{(k)} =(-1)^m\left(q_m(t)y^{(m)}\right)^{(m)},\; \nu_n:=1, $$ where $m \in \{0, 1\}$, $\alpha \not\in \{1, 3, \dots , 2n-1\}$ and $\nu_0, \dots, \nu_{n-1},$ are real constants satisfying certain conditions, are investigated. In particular, the case when $q_m(t)=\frac{\beta}{t^{2n-2m-\alpha}\ln^2 t }$ is studied.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=221
work_keys_str_mv AT simonafisnarova oscillationandnonoscillationofperturbedhigherordereulertypedifferentialequations
_version_ 1721303821649444864