EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA
The generation of electric power through the conventional systems (thermal and hydroelectric) is no longer sufficient to meet the increasing industrial and commercial usage. Therefore, an alternative energy conversion system is currently being sought. The aim of the presented study is to develop a d...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
CTU Central Library
2018-02-01
|
Series: | Acta Polytechnica |
Online Access: | https://ojs.cvut.cz/ojs/index.php/ap/article/view/4668 |
id |
doaj-569990952cda4f929c9173f649d747e5 |
---|---|
record_format |
Article |
spelling |
doaj-569990952cda4f929c9173f649d747e52020-11-25T00:15:18ZengCTU Central LibraryActa Polytechnica1210-27091805-23632018-02-015811810.14311/AP.2018.58.00014092EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMAAyokunle Oluwaseun Ayeleso0Cape Peninsula University of TechnologyThe generation of electric power through the conventional systems (thermal and hydroelectric) is no longer sufficient to meet the increasing industrial and commercial usage. Therefore, an alternative energy conversion system is currently being sought. The aim of the presented study is to develop a direct energy conversion system (Magnetohydrodynamics, MHD generator) to generate electric power using plasma. Additionally, the generator electric response is investigated based on the Faraday’s principle of electromagnetism and fluid dynamics. For this purpose, a rectangular MHD generator prototype with segmented electrodes was constructed and subjected to continuous plasma from a DC arc source at test facilities available in the Western Cape region (South Africa). Subsequently, the terminal voltages at the middle-electrodes were measured one after another across 1, 100 and 470 Ω load resistors. In all experiments, the absolute time-averages of the measured terminal voltage across each load resistor were similar, which indicates a generation of power. The maximum power of the order 0.203mW was obtained when 1 Ω resistor was connected to the middle-electrodes. Conclusively, these results validate the measurement approach of the MHD generator with segmented electrodes and could be used to design a large MHD unit that can be incorporated to the existing conventional thermal plant to improve their cyclic thermal efficiency.https://ojs.cvut.cz/ojs/index.php/ap/article/view/4668 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ayokunle Oluwaseun Ayeleso |
spellingShingle |
Ayokunle Oluwaseun Ayeleso EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA Acta Polytechnica |
author_facet |
Ayokunle Oluwaseun Ayeleso |
author_sort |
Ayokunle Oluwaseun Ayeleso |
title |
EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA |
title_short |
EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA |
title_full |
EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA |
title_fullStr |
EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA |
title_full_unstemmed |
EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA |
title_sort |
experimental characterization of a magnetohydrodynamic power generator under dc arc plasma |
publisher |
CTU Central Library |
series |
Acta Polytechnica |
issn |
1210-2709 1805-2363 |
publishDate |
2018-02-01 |
description |
The generation of electric power through the conventional systems (thermal and hydroelectric) is no longer sufficient to meet the increasing industrial and commercial usage. Therefore, an alternative energy conversion system is currently being sought. The aim of the presented study is to develop a direct energy conversion system (Magnetohydrodynamics, MHD generator) to generate electric power using plasma. Additionally, the generator electric response is investigated based on the Faraday’s principle of electromagnetism and fluid dynamics. For this purpose, a rectangular MHD generator prototype with segmented electrodes was constructed and subjected to continuous plasma from a DC arc source at test facilities available in the Western Cape region (South Africa). Subsequently, the terminal voltages at the middle-electrodes were measured one after another across 1, 100 and 470 Ω load resistors. In all experiments, the absolute time-averages of the measured terminal voltage across each load resistor were similar, which indicates a generation of power. The maximum power of the order 0.203mW was obtained when 1 Ω resistor was connected to the middle-electrodes. Conclusively, these results validate the measurement approach of the MHD generator with segmented electrodes and could be used to design a large MHD unit that can be incorporated to the existing conventional thermal plant to improve their cyclic thermal efficiency. |
url |
https://ojs.cvut.cz/ojs/index.php/ap/article/view/4668 |
work_keys_str_mv |
AT ayokunleoluwaseunayeleso experimentalcharacterizationofamagnetohydrodynamicpowergeneratorunderdcarcplasma |
_version_ |
1725387712145391616 |