ANN Modeling of a Chemical Humidity Sensing Mechanism

This work aims to achieve a modeling of a resistive-type humidity sensing mechanism (RHSM). This model takes into account the parameters of non-linearity, hysteresis, temperature, frequency, substrate type. Furthermore, we investigated the TiO2 and PMAPTAC concentrations effects on the humidity sens...

Full description

Bibliographic Details
Main Authors: Souhil KOUDA, Zohir DIBI, Fayçal Meddour, Abdelghani DENDOUGA, Samir BARRA
Format: Article
Language:English
Published: IFSA Publishing, S.L. 2010-10-01
Series:Sensors & Transducers
Subjects:
MLP
Online Access:http://www.sensorsportal.com/HTML/DIGEST/october_2010/P_690.pdf
id doaj-5685cd7077e54b68b2aa84d245572b07
record_format Article
spelling doaj-5685cd7077e54b68b2aa84d245572b072020-11-24T23:39:36ZengIFSA Publishing, S.L.Sensors & Transducers2306-85151726-54792010-10-011211019ANN Modeling of a Chemical Humidity Sensing MechanismSouhil KOUDA0Zohir DIBI1Fayçal Meddour2Abdelghani DENDOUGA3Samir BARRA4LEA, electronic department, Batna University, 05 avenue Chahid Boukhlouf Batna, 05000, AlgeriaLEA, electronic department, Batna University, 05 avenue Chahid Boukhlouf Batna, 05000, AlgeriaLEA, electronic department, Batna University, 05 avenue Chahid Boukhlouf Batna, 05000, AlgeriaLEA, electronic department, Batna University, 05 avenue Chahid Boukhlouf Batna, 05000, AlgeriaLEA, electronic department, Batna University, 05 avenue Chahid Boukhlouf Batna, 05000, AlgeriaThis work aims to achieve a modeling of a resistive-type humidity sensing mechanism (RHSM). This model takes into account the parameters of non-linearity, hysteresis, temperature, frequency, substrate type. Furthermore, we investigated the TiO2 and PMAPTAC concentrations effects on the humidity sensing properties in our model. Using neuronal networks and Matlab environment, we have done the training to realize an analytical model ANN and create a component, accurately express the above parameters variations, for our sensing mechanism model in the PSPICE simulator library. Simulation has been used to evaluate the effect of variations of non-linearity, hysteresis, temperature, frequency, substrate type and TiO2 and PMAPTAC concentrations effects, where the output of this model is identical to the output of the chemical humidity sensing mechanism used. http://www.sensorsportal.com/HTML/DIGEST/october_2010/P_690.pdfResistive humidity sensorSensing mechanismNeuronal networkMLPTiO2 PMAPTAC
collection DOAJ
language English
format Article
sources DOAJ
author Souhil KOUDA
Zohir DIBI
Fayçal Meddour
Abdelghani DENDOUGA
Samir BARRA
spellingShingle Souhil KOUDA
Zohir DIBI
Fayçal Meddour
Abdelghani DENDOUGA
Samir BARRA
ANN Modeling of a Chemical Humidity Sensing Mechanism
Sensors & Transducers
Resistive humidity sensor
Sensing mechanism
Neuronal network
MLP
TiO2 PMAPTAC
author_facet Souhil KOUDA
Zohir DIBI
Fayçal Meddour
Abdelghani DENDOUGA
Samir BARRA
author_sort Souhil KOUDA
title ANN Modeling of a Chemical Humidity Sensing Mechanism
title_short ANN Modeling of a Chemical Humidity Sensing Mechanism
title_full ANN Modeling of a Chemical Humidity Sensing Mechanism
title_fullStr ANN Modeling of a Chemical Humidity Sensing Mechanism
title_full_unstemmed ANN Modeling of a Chemical Humidity Sensing Mechanism
title_sort ann modeling of a chemical humidity sensing mechanism
publisher IFSA Publishing, S.L.
series Sensors & Transducers
issn 2306-8515
1726-5479
publishDate 2010-10-01
description This work aims to achieve a modeling of a resistive-type humidity sensing mechanism (RHSM). This model takes into account the parameters of non-linearity, hysteresis, temperature, frequency, substrate type. Furthermore, we investigated the TiO2 and PMAPTAC concentrations effects on the humidity sensing properties in our model. Using neuronal networks and Matlab environment, we have done the training to realize an analytical model ANN and create a component, accurately express the above parameters variations, for our sensing mechanism model in the PSPICE simulator library. Simulation has been used to evaluate the effect of variations of non-linearity, hysteresis, temperature, frequency, substrate type and TiO2 and PMAPTAC concentrations effects, where the output of this model is identical to the output of the chemical humidity sensing mechanism used.
topic Resistive humidity sensor
Sensing mechanism
Neuronal network
MLP
TiO2 PMAPTAC
url http://www.sensorsportal.com/HTML/DIGEST/october_2010/P_690.pdf
work_keys_str_mv AT souhilkouda annmodelingofachemicalhumiditysensingmechanism
AT zohirdibi annmodelingofachemicalhumiditysensingmechanism
AT faycalmeddour annmodelingofachemicalhumiditysensingmechanism
AT abdelghanidendouga annmodelingofachemicalhumiditysensingmechanism
AT samirbarra annmodelingofachemicalhumiditysensingmechanism
_version_ 1725512643787096064