Variational analysis for simulating free-surface flows in a porous medium

A variational formulation has been developed to solve a parabolic partial differential equation describing free-surface flows in a porous medium. The variational finite element method is used to obtain a discrete form of equations for a two-dimensional domain. The matrix characteristics and the sta...

Full description

Bibliographic Details
Main Authors: Shabbir Ahmed, Charles Collins
Format: Article
Language:English
Published: Hindawi Limited 2003-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/S1110757X03301147
Description
Summary:A variational formulation has been developed to solve a parabolic partial differential equation describing free-surface flows in a porous medium. The variational finite element method is used to obtain a discrete form of equations for a two-dimensional domain. The matrix characteristics and the stability criteria have been investigated to develop a stable numerical algorithm for solving the governing equation. A computer programme has been written to solve a symmetric positive definite system obtained from the variational finite element analysis. The system of equations is solved using the conjugate gradient method. The solution generates time-varying hydraulic heads in the subsurface. The interfacing free surface between the unsaturated and saturated zones in the variably saturated domain is located, based on the computed hydraulic heads. Example problems are investigated. The finite element solutions are compared with the exact solutions for the example problems. The numerical characteristics of the finite element solution method are also investigated using the example problems.
ISSN:1110-757X
1687-0042