Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene
For the first time, a novel highly permeable glassy polymer, addition poly[bis(trimethylsilyl)tricyclononene] (PBTMST), was proposed for its use in a gas-liquid membrane contactor for the regeneration of CO2 absorption liquids (desorption of CO2). This membrane material possesses a good chemica...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2014-11-01
|
Series: | Oil & Gas Science and Technology |
Online Access: | http://dx.doi.org/10.2516/ogst/2013156 |
id |
doaj-5636815ba81d45ef9f0dc7e3a0eec42d |
---|---|
record_format |
Article |
spelling |
doaj-5636815ba81d45ef9f0dc7e3a0eec42d2021-02-02T00:38:05ZengEDP SciencesOil & Gas Science and Technology1294-44751953-81892014-11-016961059106810.2516/ogst/2013156ogst120298Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel PolynorborneneShutova A.A.Trusov A.N.Bermeshev M.V.Legkov S.A.Gringolts M.L.Finkelstein E.Sh.Bondarenko G.N.Volkov A.V. For the first time, a novel highly permeable glassy polymer, addition poly[bis(trimethylsilyl)tricyclononene] (PBTMST), was proposed for its use in a gas-liquid membrane contactor for the regeneration of CO2 absorption liquids (desorption of CO2). This membrane material possesses a good chemical stability and high barrier properties for a number of alkanolmines (30 wt% solutions of MEA, DEA, MDEA, AMP, DEAE or AEAE) under typical regeneration conditions (T = 100°C). Studies on gas transport properties of PBTMST (100°C and 1-40 bar) show that permeability coefficients of oxygen, nitrogen and carbon dioxide initially tend to decrease, and then level off after first 6-8 hours of operation. This behavior can be explained by partial relaxation of the free-volume structure of PBTMST, no chemical degradation of polymer material at high temperature was confirmed by IR analysis. At the same time, this membrane material preserves high gas permeability coefficients which are higher than those of conventional materials used in the membrane contactors. Gas-liquid membrane contactor based on dense PBTMST membrane shows a good, stable performance; particularly, CO2 loading in diethanolamine solution (30 wt%) can be reduced for 0.05-0.34 mole/mole by single pass through the membrane desorber at 100°C and elevated pressure. It seems that desorption rate here is mainly controlled by liquid phase because decreasing of membrane thickness by 50% (from 31 to 21 μm) leads to improvement of DEA regeneration only by 1.5-8.5%. http://dx.doi.org/10.2516/ogst/2013156 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shutova A.A. Trusov A.N. Bermeshev M.V. Legkov S.A. Gringolts M.L. Finkelstein E.Sh. Bondarenko G.N. Volkov A.V. |
spellingShingle |
Shutova A.A. Trusov A.N. Bermeshev M.V. Legkov S.A. Gringolts M.L. Finkelstein E.Sh. Bondarenko G.N. Volkov A.V. Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene Oil & Gas Science and Technology |
author_facet |
Shutova A.A. Trusov A.N. Bermeshev M.V. Legkov S.A. Gringolts M.L. Finkelstein E.Sh. Bondarenko G.N. Volkov A.V. |
author_sort |
Shutova A.A. |
title |
Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene |
title_short |
Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene |
title_full |
Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene |
title_fullStr |
Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene |
title_full_unstemmed |
Regeneration of Alkanolamine Solutions in Membrane Contactor Based on Novel Polynorbornene |
title_sort |
regeneration of alkanolamine solutions in membrane contactor based on novel polynorbornene |
publisher |
EDP Sciences |
series |
Oil & Gas Science and Technology |
issn |
1294-4475 1953-8189 |
publishDate |
2014-11-01 |
description |
For the first time, a novel highly permeable glassy polymer, addition poly[bis(trimethylsilyl)tricyclononene] (PBTMST), was proposed for its use in a gas-liquid membrane contactor for the regeneration of CO2 absorption liquids (desorption of CO2). This membrane material possesses a good chemical stability and high barrier properties for a number of alkanolmines (30 wt% solutions of MEA, DEA, MDEA, AMP, DEAE or AEAE) under typical regeneration conditions (T = 100°C). Studies on gas transport properties of PBTMST (100°C and 1-40 bar) show that permeability coefficients of oxygen, nitrogen and carbon dioxide initially tend to decrease, and then level off after first 6-8 hours of operation. This behavior can be explained by partial relaxation of the free-volume structure of PBTMST, no chemical degradation of polymer material at high temperature was confirmed by IR analysis. At the same time, this membrane material preserves high gas permeability coefficients which are higher than those of conventional materials used in the membrane contactors. Gas-liquid membrane contactor based on dense PBTMST membrane shows a good, stable performance; particularly, CO2 loading in diethanolamine solution (30 wt%) can be reduced for 0.05-0.34 mole/mole by single pass through the membrane desorber at 100°C and elevated pressure. It seems that desorption rate here is mainly controlled by liquid phase because decreasing of membrane thickness by 50% (from 31 to 21 μm) leads to improvement of DEA regeneration only by 1.5-8.5%.
|
url |
http://dx.doi.org/10.2516/ogst/2013156 |
work_keys_str_mv |
AT shutovaaa regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene AT trusovan regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene AT bermeshevmv regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene AT legkovsa regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene AT gringoltsml regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene AT finkelsteinesh regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene AT bondarenkogn regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene AT volkovav regenerationofalkanolaminesolutionsinmembranecontactorbasedonnovelpolynorbornene |
_version_ |
1724313381450547200 |