Conservation Laws, Symmetry Reductions, and New Exact Solutions of the (2 + 1)-Dimensional Kadomtsev-Petviashvili Equation with Time-Dependent Coefficients

The (2 + 1)-dimensional Kadomtsev-Petviashvili equation with time-dependent coefficients is investigated. By means of the Lie group method, we first obtain several geometric symmetries for the equation in terms of coefficient functions and arbitrary functions of t. Based on the obtained symmetries,...

Full description

Bibliographic Details
Main Author: Li-hua Zhang
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/853578
Description
Summary:The (2 + 1)-dimensional Kadomtsev-Petviashvili equation with time-dependent coefficients is investigated. By means of the Lie group method, we first obtain several geometric symmetries for the equation in terms of coefficient functions and arbitrary functions of t. Based on the obtained symmetries, many nontrivial and time-dependent conservation laws for the equation are obtained with the help of Ibragimov’s new conservation theorem. Applying the characteristic equations of the obtained symmetries, the (2 + 1)-dimensional KP equation is reduced to (1 + 1)-dimensional nonlinear partial differential equations, including a special case of (2 + 1)-dimensional Boussinesq equation and different types of the KdV equation. At the same time, many new exact solutions are derived such as soliton and soliton-like solutions and algebraically explicit analytical solutions.
ISSN:1085-3375
1687-0409