A Systematic Compact Model Parameter Calibration with Adaptive Pattern Search Algorithm

A systematic device-model calibration (extraction) methodology has been proposed to reduce parameter calibration time of advanced compact model for modern nano-scale semiconductor devices. The adaptive pattern search algorithm is a variant of the direct search method, which explore in the parameter...

Full description

Bibliographic Details
Main Authors: Jeesoo Chang, Sungmin Hwang, Kyungchul Park, Taejin Jang, Kyung-Kyu Min, Min-Hye Oh, Jonghyuk Park, Jong-Ho Lee, Byung-Gook Park
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/9/4155
Description
Summary:A systematic device-model calibration (extraction) methodology has been proposed to reduce parameter calibration time of advanced compact model for modern nano-scale semiconductor devices. The adaptive pattern search algorithm is a variant of the direct search method, which explore in the parameter space with adaptive searching step and direction. It is very straightforward, but powerful, in high dimensional optimization problem since adaptive step and direction are decided by simple computation. The proposed method iterates less but shows superior accuracy over the conventional method. It is possible to be applied to a behavioral or empirical model correspond to emerging devices, such as tunneling field-effect transistor (TFET) and negative capacitance field-effect transistor (NCFET) due to its universality in parameter calibration for the model accuracy.
ISSN:2076-3417