Smoothing L0 Regularization for Extreme Learning Machine
Extreme learning machine (ELM) has been put forward for single hidden layer feedforward networks. Because of its powerful modeling ability and it needs less human intervention, the ELM algorithm has been used widely in both regression and classification experiments. However, in order to achieve requ...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/9175106 |
Summary: | Extreme learning machine (ELM) has been put forward for single hidden layer feedforward networks. Because of its powerful modeling ability and it needs less human intervention, the ELM algorithm has been used widely in both regression and classification experiments. However, in order to achieve required accuracy, it needs many more hidden nodes than is typically needed by the conventional neural networks. This paper considers a new efficient learning algorithm for ELM with smoothing L0 regularization. A novel algorithm updates weights in the direction along which the overall square error is reduced the most and then this new algorithm can sparse network structure very efficiently. The numerical experiments show that the ELM algorithm with smoothing L0 regularization has less hidden nodes but better generalization performance than original ELM and ELM with L1 regularization algorithms. |
---|---|
ISSN: | 1024-123X 1563-5147 |