Prostate cancer detection: Fusion of cytological and textural features
A computer-assisted system for histological prostate cancer diagnosis can assist pathologists in two stages: (i) to locate cancer regions in a large digitized tissue biopsy, and (ii) to assign Gleason grades to the regions detected in stage 1. Most previous studies on this topic have primarily addre...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2011-01-01
|
Series: | Journal of Pathology Informatics |
Subjects: | |
Online Access: | http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2011;volume=2;issue=2;spage=3;epage=3;aulast=Nguyen |
Summary: | A computer-assisted system for histological prostate cancer diagnosis can assist pathologists in two stages: (i) to locate cancer regions in a large digitized tissue biopsy, and (ii) to assign Gleason grades to the regions detected in stage 1. Most previous studies on this topic have primarily addressed the second stage by classifying the preselected tissue regions. In this paper, we address the first stage by presenting a cancer detection approach for the whole slide tissue image. We propose a novel method to extract a cytological feature, namely the presence of cancer nuclei (nuclei with prominent nucleoli) in the tissue, and apply this feature to detect the cancer regions. Additionally, conventional image texture features which have been widely used in the literature are also considered. The performance comparison among the proposed cytological textural feature combination method, the texture-based method and the cytological feature-based method demonstrates the robustness of the extracted cytological feature. At a false positive rate of 6%, the proposed method is able to achieve a sensitivity of 78% on a dataset including six training images (each of which has approximately 4,000x7,000 pixels) and 1 1 whole-slide test images (each of which has approximately 5,000x23,000 pixels). All images are at 20X magnification. |
---|---|
ISSN: | 2153-3539 2153-3539 |