Mutual Information-Assisted Wavelet Function Selection for Enhanced Rolling Bearing Fault Diagnosis

This paper presents an enhanced rolling bearing fault diagnosis approach, based on optimized wavelet packet transform (WPT) assisted with quantitative wavelet function selection. Mutual information is utilized as a quantitative measure to select the most suitable wavelet function for the WPT-based v...

Full description

Bibliographic Details
Main Authors: Ruqiang Yan, Mengxiao Shan, Jianwei Cui, Yahui Wu
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2015/794921
Description
Summary:This paper presents an enhanced rolling bearing fault diagnosis approach, based on optimized wavelet packet transform (WPT) assisted with quantitative wavelet function selection. Mutual information is utilized as a quantitative measure to select the most suitable wavelet function for the WPT-based vibration analysis. Energy features from coefficients of an optimal set of orthogonal wavelet subspaces which resulted from the WPT-based vibration analysis are input to different classifiers. The fault states of the rolling bearings can then be identified. Experiment studies conducted on a rolling bearing test system have verified the effectiveness of the proposed approach for rolling bearing fault diagnosis.
ISSN:1070-9622
1875-9203