Green's function for the lossy wave equation

Using an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine in...

Full description

Bibliographic Details
Main Authors: R. Aleixo, E. Capelas de Oliveira
Format: Article
Language:Portuguese
Published: Sociedade Brasileira de Física
Series:Revista Brasileira de Ensino de Física
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172008000100003&lng=en&tlng=en
id doaj-55e7bfe96cde42e7b88d302e81096b5f
record_format Article
spelling doaj-55e7bfe96cde42e7b88d302e81096b5f2020-11-25T02:25:59ZporSociedade Brasileira de FísicaRevista Brasileira de Ensino de Física1806-11171806-91263011302.11302.510.1590/S1806-11172008000100003S1806-11172008000100003Green's function for the lossy wave equationR. Aleixo0E. Capelas de Oliveira1Universidade Estadual de CampinasUniversidade Estadual de CampinasUsing an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine integral transform of the zero order Bessel function. As an application we present the calculation of the Green's function associated with a second-order partial differential equation, particularly a wave equation for a lossy two-dimensional medium. This application is associated with the transient electromagnetic field radiated by a pulsed source in the presence of dispersive media, which is of great importance in the theory of geophysical prospecting, lightning studies and development of pulsed antenna systems.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172008000100003&lng=en&tlng=ensonine-besselrepresentação integralequação da onda dissipativa
collection DOAJ
language Portuguese
format Article
sources DOAJ
author R. Aleixo
E. Capelas de Oliveira
spellingShingle R. Aleixo
E. Capelas de Oliveira
Green's function for the lossy wave equation
Revista Brasileira de Ensino de Física
sonine-bessel
representação integral
equação da onda dissipativa
author_facet R. Aleixo
E. Capelas de Oliveira
author_sort R. Aleixo
title Green's function for the lossy wave equation
title_short Green's function for the lossy wave equation
title_full Green's function for the lossy wave equation
title_fullStr Green's function for the lossy wave equation
title_full_unstemmed Green's function for the lossy wave equation
title_sort green's function for the lossy wave equation
publisher Sociedade Brasileira de Física
series Revista Brasileira de Ensino de Física
issn 1806-1117
1806-9126
description Using an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine integral transform of the zero order Bessel function. As an application we present the calculation of the Green's function associated with a second-order partial differential equation, particularly a wave equation for a lossy two-dimensional medium. This application is associated with the transient electromagnetic field radiated by a pulsed source in the presence of dispersive media, which is of great importance in the theory of geophysical prospecting, lightning studies and development of pulsed antenna systems.
topic sonine-bessel
representação integral
equação da onda dissipativa
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172008000100003&lng=en&tlng=en
work_keys_str_mv AT raleixo greensfunctionforthelossywaveequation
AT ecapelasdeoliveira greensfunctionforthelossywaveequation
_version_ 1724849036619415552