Green's function for the lossy wave equation
Using an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine in...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Portuguese |
Published: |
Sociedade Brasileira de Física
|
Series: | Revista Brasileira de Ensino de Física |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172008000100003&lng=en&tlng=en |
id |
doaj-55e7bfe96cde42e7b88d302e81096b5f |
---|---|
record_format |
Article |
spelling |
doaj-55e7bfe96cde42e7b88d302e81096b5f2020-11-25T02:25:59ZporSociedade Brasileira de FísicaRevista Brasileira de Ensino de Física1806-11171806-91263011302.11302.510.1590/S1806-11172008000100003S1806-11172008000100003Green's function for the lossy wave equationR. Aleixo0E. Capelas de Oliveira1Universidade Estadual de CampinasUniversidade Estadual de CampinasUsing an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine integral transform of the zero order Bessel function. As an application we present the calculation of the Green's function associated with a second-order partial differential equation, particularly a wave equation for a lossy two-dimensional medium. This application is associated with the transient electromagnetic field radiated by a pulsed source in the presence of dispersive media, which is of great importance in the theory of geophysical prospecting, lightning studies and development of pulsed antenna systems.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172008000100003&lng=en&tlng=ensonine-besselrepresentação integralequação da onda dissipativa |
collection |
DOAJ |
language |
Portuguese |
format |
Article |
sources |
DOAJ |
author |
R. Aleixo E. Capelas de Oliveira |
spellingShingle |
R. Aleixo E. Capelas de Oliveira Green's function for the lossy wave equation Revista Brasileira de Ensino de Física sonine-bessel representação integral equação da onda dissipativa |
author_facet |
R. Aleixo E. Capelas de Oliveira |
author_sort |
R. Aleixo |
title |
Green's function for the lossy wave equation |
title_short |
Green's function for the lossy wave equation |
title_full |
Green's function for the lossy wave equation |
title_fullStr |
Green's function for the lossy wave equation |
title_full_unstemmed |
Green's function for the lossy wave equation |
title_sort |
green's function for the lossy wave equation |
publisher |
Sociedade Brasileira de Física |
series |
Revista Brasileira de Ensino de Física |
issn |
1806-1117 1806-9126 |
description |
Using an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine integral transform of the zero order Bessel function. As an application we present the calculation of the Green's function associated with a second-order partial differential equation, particularly a wave equation for a lossy two-dimensional medium. This application is associated with the transient electromagnetic field radiated by a pulsed source in the presence of dispersive media, which is of great importance in the theory of geophysical prospecting, lightning studies and development of pulsed antenna systems. |
topic |
sonine-bessel representação integral equação da onda dissipativa |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172008000100003&lng=en&tlng=en |
work_keys_str_mv |
AT raleixo greensfunctionforthelossywaveequation AT ecapelasdeoliveira greensfunctionforthelossywaveequation |
_version_ |
1724849036619415552 |