Green's function for the lossy wave equation
Using an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine in...
Main Authors: | , |
---|---|
Format: | Article |
Language: | Portuguese |
Published: |
Sociedade Brasileira de Física
|
Series: | Revista Brasileira de Ensino de Física |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172008000100003&lng=en&tlng=en |
Summary: | Using an integral representation for the first kind Hankel (Hankel-Bessel Integral Representation) function we obtain the so-called Basset formula, an integral representation for the second kind modified Bessel function. Using the Sonine-Bessel integral representation we obtain the Fourier cosine integral transform of the zero order Bessel function. As an application we present the calculation of the Green's function associated with a second-order partial differential equation, particularly a wave equation for a lossy two-dimensional medium. This application is associated with the transient electromagnetic field radiated by a pulsed source in the presence of dispersive media, which is of great importance in the theory of geophysical prospecting, lightning studies and development of pulsed antenna systems. |
---|---|
ISSN: | 1806-1117 1806-9126 |