Targeting DNA Damage Response in the Radio(Chemo)therapy of Non-Small Cell Lung Cancer

Lung cancer is the leading cause of cancer death worldwide due to its high incidence and mortality. As the most common lung cancer, non-small cell lung cancer (NSCLC) is a terrible threat to human health. Despite improvements in diagnosis and combined treatments including surgical resection, radioth...

Full description

Bibliographic Details
Main Authors: Ling Li, Tao Zhu, Yuan-Feng Gao, Wei Zheng, Chen-Jing Wang, Ling Xiao, Ma-Sha Huang, Ji-Ye Yin, Hong-Hao Zhou, Zhao-Qian Liu
Format: Article
Language:English
Published: MDPI AG 2016-05-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/17/6/839
Description
Summary:Lung cancer is the leading cause of cancer death worldwide due to its high incidence and mortality. As the most common lung cancer, non-small cell lung cancer (NSCLC) is a terrible threat to human health. Despite improvements in diagnosis and combined treatments including surgical resection, radiotherapy and chemotherapy, the overall survival for NSCLC patients still remains poor. DNA damage is considered to be the primary cause of lung cancer development and is normally recognized and repaired by the intrinsic DNA damage response machinery. The role of DNA repair pathways in radio(chemo)therapy-resistant cancers has become an area of significant interest in the clinical setting. Meanwhile, some studies have proved that genetic and epigenetic factors can alter the DNA damage response and repair, which results in changes of the radiation and chemotherapy curative effect in NSCLC. In this review, we focus on the effect of genetic polymorphisms and epigenetic factors such as miRNA regulation and lncRNA regulation participating in DNA damage repair in response to radio(chemo)therapy in NSCLC. These may provide novel information on the radio(chemo)therapy of NSCLC based on the individual DNA damage response.
ISSN:1422-0067