Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics
Abstract. Near infrared technology have been widely applied in many fields, including agriculture especially in sorting and grading process. The advantage of this technology: simple sample preparation, rapid, effective and non-destructive. The main objective of this study is to evaluate the feasibil...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Syiah Kuala University
2015-04-01
|
Series: | Rona Teknik Pertanian |
Subjects: | |
Online Access: | http://jurnal.unsyiah.ac.id/RTP/article/view/2683 |
id |
doaj-55d604914d8d413d80ca31abe5418b74 |
---|---|
record_format |
Article |
spelling |
doaj-55d604914d8d413d80ca31abe5418b742020-11-24T22:25:30ZengSyiah Kuala UniversityRona Teknik Pertanian2085-26142528-26542015-04-0181101810.17969/rtp.v8i1.26832533Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And ChemometricsAgus A. Munawar0Program Studi Teknik Pertanian, Fakultas Pertanian, Universitas Syiah KualaAbstract. Near infrared technology have been widely applied in many fields, including agriculture especially in sorting and grading process. The advantage of this technology: simple sample preparation, rapid, effective and non-destructive. The main objective of this study is to evaluate the feasibility of NIR technology in classifying several agricultural products based on their electro-optic properties. NIR diffuse reflectance spectra of apples, bananas, mangoes, garlics, tomatoes, green grapes, red grapes and oranges were acquired in wavelength range of 1000-2500 nm with gradual increment of 2 nm. Chemometrics methods were applied in combination with NIR spectra data. Classification was performed by applying principal component analysis (PCA) followed by non-iterative partial least square (NIPALS) cross validation. The results showed that NIR and chemometrics was able to differentiate and classify these agricultural products with two latent variables (2 PCs) and total explained variance of 97% (88% PC1 and 9% PC2). Furthermore, it also showed that multiplicative scatter correction (MSC) was found to be effective spectra correction or enhancement method and increased classification accuracy and robustness. It may conclude that NIR technology combined with chemometrics was feasible to apply as a rapid and non-destructive method for sorting and grading agricultural products. Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics Abstract. Aplikasi teknologi near infra red (NIR) telah digunakan dalam banyak bidang, termasuk untuk bidang pertanian terutama pada proses sortasi dan grading. Keunggulan metode ini antara lain : rapid, efektif, simultan dan tanpa merusak objek yang dikaji. Tujuan utama dari studi ini adalah untuk mengkaji potensi NIR dalam mengklasifikasi beberapa produk pertanian berdasarkan karakteristik sifat elektro-optik dari produk tersebut. Spektrum NIR pada panjang gelombang 1000 – 2500 nm dengan increment 2 nm diakuisisi untuk produk pertanian : apel, pisang, manga, bawang putih, tomat, anggur hijau, anggur merah dan jeruk. Metode chemo metrics digunakan dalam studi ini untuk dikombinasikan dengan spektrum NIR. Klasifikasi produk pertanian dilakukan dengan menerapkan metode principal component analysis (PCA) yang disertai dengan metode non-iterative partial least square (NIPALS) cross validation. Hasil studi menunjukkan bahwa kombinasi NIR dan chemo metrics mampu membedakan dan mengklasifikasi produk pertanian tersebut dengan menggunakan dua latent variable pada PCA (2 PCs) dengan total explained variance 97% (88% PC1 dan 9% PC2). Selain itu, dari studi ini juga didapatkan bahwa perbaikan data spectrum dengan metode multiplicative scatter correction (MSC) sebelum klasifikasi mampu meningkatkan akurasi hasil klasifikasi. Secara umum, dapat disimpulkan bahwa teknologi NIR dan chemo metrics dapat dijadikan sebagai metode yang efektif untuk sortasi dan atau grading produk pertanian.http://jurnal.unsyiah.ac.id/RTP/article/view/2683NIRchemometricsclassificationPCAklasifikasi |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Agus A. Munawar |
spellingShingle |
Agus A. Munawar Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics Rona Teknik Pertanian NIR chemometrics classification PCA klasifikasi |
author_facet |
Agus A. Munawar |
author_sort |
Agus A. Munawar |
title |
Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics |
title_short |
Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics |
title_full |
Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics |
title_fullStr |
Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics |
title_full_unstemmed |
Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics |
title_sort |
rapid classification of agricultural products based on their electro-optic properties using near infrared reflectance and chemometrics |
publisher |
Syiah Kuala University |
series |
Rona Teknik Pertanian |
issn |
2085-2614 2528-2654 |
publishDate |
2015-04-01 |
description |
Abstract. Near infrared technology have been widely applied in many fields, including agriculture especially in sorting and grading process. The advantage of this technology: simple sample preparation, rapid, effective and non-destructive. The main objective of this study is to evaluate the feasibility of NIR technology in classifying several agricultural products based on their electro-optic properties. NIR diffuse reflectance spectra of apples, bananas, mangoes, garlics, tomatoes, green grapes, red grapes and oranges were acquired in wavelength range of 1000-2500 nm with gradual increment of 2 nm. Chemometrics methods were applied in combination with NIR spectra data. Classification was performed by applying principal component analysis (PCA) followed by non-iterative partial least square (NIPALS) cross validation. The results showed that NIR and chemometrics was able to differentiate and classify these agricultural products with two latent variables (2 PCs) and total explained variance of 97% (88% PC1 and 9% PC2). Furthermore, it also showed that multiplicative scatter correction (MSC) was found to be effective spectra correction or enhancement method and increased classification accuracy and robustness. It may conclude that NIR technology combined with chemometrics was feasible to apply as a rapid and non-destructive method for sorting and grading agricultural products.
Rapid Classification Of Agricultural Products Based On Their Electro-Optic Properties Using Near Infrared Reflectance And Chemometrics
Abstract. Aplikasi teknologi near infra red (NIR) telah digunakan dalam banyak bidang, termasuk untuk bidang pertanian terutama pada proses sortasi dan grading. Keunggulan metode ini antara lain : rapid, efektif, simultan dan tanpa merusak objek yang dikaji. Tujuan utama dari studi ini adalah untuk mengkaji potensi NIR dalam mengklasifikasi beberapa produk pertanian berdasarkan karakteristik sifat elektro-optik dari produk tersebut. Spektrum NIR pada panjang gelombang 1000 – 2500 nm dengan increment 2 nm diakuisisi untuk produk pertanian : apel, pisang, manga, bawang putih, tomat, anggur hijau, anggur merah dan jeruk. Metode chemo metrics digunakan dalam studi ini untuk dikombinasikan dengan spektrum NIR. Klasifikasi produk pertanian dilakukan dengan menerapkan metode principal component analysis (PCA) yang disertai dengan metode non-iterative partial least square (NIPALS) cross validation. Hasil studi menunjukkan bahwa kombinasi NIR dan chemo metrics mampu membedakan dan mengklasifikasi produk pertanian tersebut dengan menggunakan dua latent variable pada PCA (2 PCs) dengan total explained variance 97% (88% PC1 dan 9% PC2). Selain itu, dari studi ini juga didapatkan bahwa perbaikan data spectrum dengan metode multiplicative scatter correction (MSC) sebelum klasifikasi mampu meningkatkan akurasi hasil klasifikasi. Secara umum, dapat disimpulkan bahwa teknologi NIR dan chemo metrics dapat dijadikan sebagai metode yang efektif untuk sortasi dan atau grading produk pertanian. |
topic |
NIR chemometrics classification PCA klasifikasi |
url |
http://jurnal.unsyiah.ac.id/RTP/article/view/2683 |
work_keys_str_mv |
AT agusamunawar rapidclassificationofagriculturalproductsbasedontheirelectroopticpropertiesusingnearinfraredreflectanceandchemometrics |
_version_ |
1725757205462908928 |