On matched asymptotic analysis for laminar channel flow with a turning point

This paper presents a formal analysis of the asimptotic behaviour of solutions of type III for the Berman equation $$ epsilon f^{iv}=ff'''-f'f'' ,quad f(0)=f''(0)=f'(1)=f(1)-1=0,, $$ where $f$ describes a laminar flow in a channel with porous walls. A sol...

Full description

Bibliographic Details
Main Author: Chunqing Lu
Format: Article
Language:English
Published: Texas State University 2000-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/conf-proc/03/l2/abstr.html
id doaj-55c0de5241624d49a715f830b2257597
record_format Article
spelling doaj-55c0de5241624d49a715f830b22575972020-11-25T00:22:45ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912000-07-01Conference03109118On matched asymptotic analysis for laminar channel flow with a turning pointChunqing LuThis paper presents a formal analysis of the asimptotic behaviour of solutions of type III for the Berman equation $$ epsilon f^{iv}=ff'''-f'f'' ,quad f(0)=f''(0)=f'(1)=f(1)-1=0,, $$ where $f$ describes a laminar flow in a channel with porous walls. A solution has a nonlinear turning point $(1-Delta )$, i.e. $f(1-Delta) = 0$ for some $Delta(epsilon)$. It is shown that $$ f(eta )sim -frac{1-Delta }{pi Delta }sin frac{pi eta }{1-Delta }, $$ as $epsilon o 0^{+}$, for $eta in [0,1-Delta )$ where $Delta $ satisfies $$ frac{Delta }{epsilon } e^{Delta/epsilon }sim frac{1}{2epi^{9} epsilon ^{8}}. $$ http://ejde.math.txstate.edu/conf-proc/03/l2/abstr.htmlSingular perturbationsturning pointlaminar flowtranscendental terms.
collection DOAJ
language English
format Article
sources DOAJ
author Chunqing Lu
spellingShingle Chunqing Lu
On matched asymptotic analysis for laminar channel flow with a turning point
Electronic Journal of Differential Equations
Singular perturbations
turning point
laminar flow
transcendental terms.
author_facet Chunqing Lu
author_sort Chunqing Lu
title On matched asymptotic analysis for laminar channel flow with a turning point
title_short On matched asymptotic analysis for laminar channel flow with a turning point
title_full On matched asymptotic analysis for laminar channel flow with a turning point
title_fullStr On matched asymptotic analysis for laminar channel flow with a turning point
title_full_unstemmed On matched asymptotic analysis for laminar channel flow with a turning point
title_sort on matched asymptotic analysis for laminar channel flow with a turning point
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2000-07-01
description This paper presents a formal analysis of the asimptotic behaviour of solutions of type III for the Berman equation $$ epsilon f^{iv}=ff'''-f'f'' ,quad f(0)=f''(0)=f'(1)=f(1)-1=0,, $$ where $f$ describes a laminar flow in a channel with porous walls. A solution has a nonlinear turning point $(1-Delta )$, i.e. $f(1-Delta) = 0$ for some $Delta(epsilon)$. It is shown that $$ f(eta )sim -frac{1-Delta }{pi Delta }sin frac{pi eta }{1-Delta }, $$ as $epsilon o 0^{+}$, for $eta in [0,1-Delta )$ where $Delta $ satisfies $$ frac{Delta }{epsilon } e^{Delta/epsilon }sim frac{1}{2epi^{9} epsilon ^{8}}. $$
topic Singular perturbations
turning point
laminar flow
transcendental terms.
url http://ejde.math.txstate.edu/conf-proc/03/l2/abstr.html
work_keys_str_mv AT chunqinglu onmatchedasymptoticanalysisforlaminarchannelflowwithaturningpoint
_version_ 1725358465619066880