On matched asymptotic analysis for laminar channel flow with a turning point
This paper presents a formal analysis of the asimptotic behaviour of solutions of type III for the Berman equation $$ epsilon f^{iv}=ff'''-f'f'' ,quad f(0)=f''(0)=f'(1)=f(1)-1=0,, $$ where $f$ describes a laminar flow in a channel with porous walls. A sol...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2000-07-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/conf-proc/03/l2/abstr.html |
id |
doaj-55c0de5241624d49a715f830b2257597 |
---|---|
record_format |
Article |
spelling |
doaj-55c0de5241624d49a715f830b22575972020-11-25T00:22:45ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912000-07-01Conference03109118On matched asymptotic analysis for laminar channel flow with a turning pointChunqing LuThis paper presents a formal analysis of the asimptotic behaviour of solutions of type III for the Berman equation $$ epsilon f^{iv}=ff'''-f'f'' ,quad f(0)=f''(0)=f'(1)=f(1)-1=0,, $$ where $f$ describes a laminar flow in a channel with porous walls. A solution has a nonlinear turning point $(1-Delta )$, i.e. $f(1-Delta) = 0$ for some $Delta(epsilon)$. It is shown that $$ f(eta )sim -frac{1-Delta }{pi Delta }sin frac{pi eta }{1-Delta }, $$ as $epsilon o 0^{+}$, for $eta in [0,1-Delta )$ where $Delta $ satisfies $$ frac{Delta }{epsilon } e^{Delta/epsilon }sim frac{1}{2epi^{9} epsilon ^{8}}. $$ http://ejde.math.txstate.edu/conf-proc/03/l2/abstr.htmlSingular perturbationsturning pointlaminar flowtranscendental terms. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chunqing Lu |
spellingShingle |
Chunqing Lu On matched asymptotic analysis for laminar channel flow with a turning point Electronic Journal of Differential Equations Singular perturbations turning point laminar flow transcendental terms. |
author_facet |
Chunqing Lu |
author_sort |
Chunqing Lu |
title |
On matched asymptotic analysis for laminar channel flow with a turning point |
title_short |
On matched asymptotic analysis for laminar channel flow with a turning point |
title_full |
On matched asymptotic analysis for laminar channel flow with a turning point |
title_fullStr |
On matched asymptotic analysis for laminar channel flow with a turning point |
title_full_unstemmed |
On matched asymptotic analysis for laminar channel flow with a turning point |
title_sort |
on matched asymptotic analysis for laminar channel flow with a turning point |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2000-07-01 |
description |
This paper presents a formal analysis of the asimptotic behaviour of solutions of type III for the Berman equation $$ epsilon f^{iv}=ff'''-f'f'' ,quad f(0)=f''(0)=f'(1)=f(1)-1=0,, $$ where $f$ describes a laminar flow in a channel with porous walls. A solution has a nonlinear turning point $(1-Delta )$, i.e. $f(1-Delta) = 0$ for some $Delta(epsilon)$. It is shown that $$ f(eta )sim -frac{1-Delta }{pi Delta }sin frac{pi eta }{1-Delta }, $$ as $epsilon o 0^{+}$, for $eta in [0,1-Delta )$ where $Delta $ satisfies $$ frac{Delta }{epsilon } e^{Delta/epsilon }sim frac{1}{2epi^{9} epsilon ^{8}}. $$ |
topic |
Singular perturbations turning point laminar flow transcendental terms. |
url |
http://ejde.math.txstate.edu/conf-proc/03/l2/abstr.html |
work_keys_str_mv |
AT chunqinglu onmatchedasymptoticanalysisforlaminarchannelflowwithaturningpoint |
_version_ |
1725358465619066880 |