Summary: | In this paper, the artificial bee colony (ABC) algorithm is hybridized with the genetic algorithm (GA) for a model parameter identification problem. When dealing with real-world and large-scale problems, it becomes evident that concentrating on a sole metaheuristic algorithm is somewhat restrictive. A skilled combination between metaheuristics or other optimization techniques, a so-called hybrid metaheuristic, can provide more efficient behavior and greater flexibility. Hybrid metaheuristics combine the advantages of one algorithm with the strengths of another. ABC, based on the foraging behavior of honey bees, and GA, based on the mechanics of nature selection, are among the most efficient biologically inspired population-based algorithms. The performance of the proposed ABC-GA hybrid algorithm is examined, including classic benchmark test functions. To demonstrate the effectiveness of ABC-GA for a real-world problem, parameter identification of an <i>Escherichia coli</i> MC4110 fed-batch cultivation process model is considered. The computational results of the designed algorithm are compared to the results of different hybridized biologically inspired techniques (ant colony optimization (ACO) and firefly algorithm (FA))—hybrid algorithms as ACO-GA, GA-ACO and ACO-FA. The algorithms are applied to the same problems—a set of benchmark test functions and the real nonlinear optimization problem. Taking into account the overall searchability and computational efficiency, the results clearly show that the proposed ABC–GA algorithm outperforms the considered hybrid algorithms.
|