Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data
Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-07-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/17/8725/2017/acp-17-8725-2017.pdf |
id |
doaj-5575bf99887d45faaf5a8e0d3ff529a2 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
C. Chan Miller D. J. Jacob D. J. Jacob E. A. Marais K. Yu K. R. Travis P. S. Kim J. A. Fisher L. Zhu G. M. Wolfe G. M. Wolfe T. F. Hanisco F. N. Keutsch F. N. Keutsch J. Kaiser J. Kaiser K.-E. Min K.-E. Min K.-E. Min S. S. Brown S. S. Brown R. A. Washenfelder R. A. Washenfelder G. González Abad K. Chance |
spellingShingle |
C. Chan Miller D. J. Jacob D. J. Jacob E. A. Marais K. Yu K. R. Travis P. S. Kim J. A. Fisher L. Zhu G. M. Wolfe G. M. Wolfe T. F. Hanisco F. N. Keutsch F. N. Keutsch J. Kaiser J. Kaiser K.-E. Min K.-E. Min K.-E. Min S. S. Brown S. S. Brown R. A. Washenfelder R. A. Washenfelder G. González Abad K. Chance Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data Atmospheric Chemistry and Physics |
author_facet |
C. Chan Miller D. J. Jacob D. J. Jacob E. A. Marais K. Yu K. R. Travis P. S. Kim J. A. Fisher L. Zhu G. M. Wolfe G. M. Wolfe T. F. Hanisco F. N. Keutsch F. N. Keutsch J. Kaiser J. Kaiser K.-E. Min K.-E. Min K.-E. Min S. S. Brown S. S. Brown R. A. Washenfelder R. A. Washenfelder G. González Abad K. Chance |
author_sort |
C. Chan Miller |
title |
Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data |
title_short |
Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data |
title_full |
Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data |
title_fullStr |
Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data |
title_full_unstemmed |
Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data |
title_sort |
glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from senex aircraft observations, and interpretation of omi satellite data |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2017-07-01 |
description |
Glyoxal (CHOCHO) is produced in the atmosphere by the oxidation of
volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC
oxidation product, it is measurable from space by solar backscatter. Isoprene
emitted by vegetation is the dominant source of CHOCHO and HCHO in most of
the world. We use aircraft observations of CHOCHO and HCHO from the SENEX
campaign over the southeast US in summer 2013 to better understand the CHOCHO
time-dependent yield from isoprene oxidation, its dependence on nitrogen
oxides (NO<sub><i>x</i></sub> ≡ NO + NO<sub>2</sub>), the behavior of the
CHOCHO–HCHO relationship, the quality of OMI CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOS-Chem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NO<sub><i>x</i></sub> conditions following the isomerization of the isoprene peroxy radical (ISOPO<sub>2</sub>). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NO<sub><i>x</i></sub> conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NO<sub><i>x</i></sub> conditions apparent in the SENEX data. |
url |
https://www.atmos-chem-phys.net/17/8725/2017/acp-17-8725-2017.pdf |
work_keys_str_mv |
AT cchanmiller glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT djjacob glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT djjacob glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT eamarais glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT kyu glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT krtravis glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT pskim glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT jafisher glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT lzhu glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT gmwolfe glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT gmwolfe glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT tfhanisco glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT fnkeutsch glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT fnkeutsch glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT jkaiser glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT jkaiser glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT kemin glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT kemin glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT kemin glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT ssbrown glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT ssbrown glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT rawashenfelder glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT rawashenfelder glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT ggonzalezabad glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata AT kchance glyoxalyieldfromisopreneoxidationandrelationtoformaldehydechemicalmechanismconstraintsfromsenexaircraftobservationsandinterpretationofomisatellitedata |
_version_ |
1725701050476789760 |
spelling |
doaj-5575bf99887d45faaf5a8e0d3ff529a22020-11-24T22:41:44ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242017-07-01178725873810.5194/acp-17-8725-2017Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite dataC. Chan Miller0D. J. Jacob1D. J. Jacob2E. A. Marais3K. Yu4K. R. Travis5P. S. Kim6J. A. Fisher7L. Zhu8G. M. Wolfe9G. M. Wolfe10T. F. Hanisco11F. N. Keutsch12F. N. Keutsch13J. Kaiser14J. Kaiser15K.-E. Min16K.-E. Min17K.-E. Min18S. S. Brown19S. S. Brown20R. A. Washenfelder21R. A. Washenfelder22G. González Abad23K. Chance24Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USASchool of Chemistry and School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, AustraliaSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USAAtmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USAJoint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USAAtmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USASchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USADepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USADepartment of Chemistry, University of Wisconsin Madison, Madison, WI, USAnow at: School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USACooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USAChemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USAnow at: School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South KoreaChemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USADepartment of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USACooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USAChemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USAHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, USAHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, USAGlyoxal (CHOCHO) is produced in the atmosphere by the oxidation of volatile organic compounds (VOCs). Like formaldehyde (HCHO), another VOC oxidation product, it is measurable from space by solar backscatter. Isoprene emitted by vegetation is the dominant source of CHOCHO and HCHO in most of the world. We use aircraft observations of CHOCHO and HCHO from the SENEX campaign over the southeast US in summer 2013 to better understand the CHOCHO time-dependent yield from isoprene oxidation, its dependence on nitrogen oxides (NO<sub><i>x</i></sub> ≡ NO + NO<sub>2</sub>), the behavior of the CHOCHO–HCHO relationship, the quality of OMI CHOCHO satellite observations, and the implications for using CHOCHO observations from space as constraints on isoprene emissions. We simulate the SENEX and OMI observations with the Goddard Earth Observing System chemical transport model (GEOS-Chem) featuring a new chemical mechanism for CHOCHO formation from isoprene. The mechanism includes prompt CHOCHO formation under low-NO<sub><i>x</i></sub> conditions following the isomerization of the isoprene peroxy radical (ISOPO<sub>2</sub>). The SENEX observations provide support for this prompt CHOCHO formation pathway, and are generally consistent with the GEOS-Chem mechanism. Boundary layer CHOCHO and HCHO are strongly correlated in the observations and the model, with some departure under low-NO<sub><i>x</i></sub> conditions due to prompt CHOCHO formation. SENEX vertical profiles indicate a free-tropospheric CHOCHO background that is absent from the model. The OMI CHOCHO data provide some support for this free-tropospheric background and show southeast US enhancements consistent with the isoprene source but a factor of 2 too low. Part of this OMI bias is due to excessive surface reflectivities assumed in the retrieval. The OMI CHOCHO and HCHO seasonal data over the southeast US are tightly correlated and provide redundant proxies of isoprene emissions. Higher temporal resolution in future geostationary satellite observations may enable detection of the prompt CHOCHO production under low-NO<sub><i>x</i></sub> conditions apparent in the SENEX data.https://www.atmos-chem-phys.net/17/8725/2017/acp-17-8725-2017.pdf |