Association of Circulating Transfer RNA fragments with antibody response to Mycoplasma bovis in beef cattle

Abstract Background High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating...

Full description

Bibliographic Details
Main Authors: Eduardo Casas, Guohong Cai, Larry A. Kuehn, Karen B. Register, Tara G. McDaneld, John D. Neill
Format: Article
Language:English
Published: BMC 2018-03-01
Series:BMC Veterinary Research
Subjects:
tRF
Online Access:http://link.springer.com/article/10.1186/s12917-018-1418-z
Description
Summary:Abstract Background High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating the infection-induced defense response in the host. Therefore, the objective of this study was to identify 5′ transfer RNA fragments (tRF5s) associated with a serum antibody response to M. bovis in beef cattle. Results The tRF5s encoding alanine, glutamic acid, glycine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with antibody response against M. bovis. tRF5s encoding alanine, glutamine, glutamic acid, glycine, histidine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with season, which could be attributed to calf growth. There were interactions (P < 0.05) between antibody response to M. bovis and season for tRF5 encoding selenocysteine (anticodon UGA), proline (anticodon CGG), and glutamine (anticodon TTG). Selenocysteine is a rarely used amino acid that is incorporated into proteins by the opal stop codon (UGA), and its function is not well understood. Conclusions Differential expression of tRF5s was identified between ELISA-positive and negative animals. Production of tRF5s may be associated with a host defense mechanism triggered by bacterial infection, or it may provide some advantage to a pathogen during infection of a host. Further studies are needed to establish if tRF5s could be used as a diagnostic marker of chronic exposure.
ISSN:1746-6148