Summary: | BackgroundMobile health (mHealth) interventions have the potential to transform the global health care landscape. The processing power of mobile devices continues to increase, and growth of mobile phone use has been observed worldwide. Uncertainty remains among key stakeholders and decision makers as to whether global health interventions can successfully tap into this trend. However, when correctly implemented, mHealth can reduce geographic, financial, and social barriers to quality health care.
ObjectiveThe aim of this study was to design and test Beacon, a mobile phone–based tool for evaluating mHealth readiness in global health interventions. Here, we present the results of an application validation study designed to understand the mobile network landscape in and around Macha, Zambia, in 2019.
MethodsBeacon was developed as an automated mobile phone app that continually collects spatiotemporal data and measures indicators of network performance. Beacon was used in and around Macha, Zambia, in 2019. Results were collected, even in the absence of network connectivity, and asynchronously uploaded to a database for further analysis.
ResultsBeacon was used to evaluate three mobile phone networks around Macha. Carriers A and B completed 6820/7034 (97.0%) and 6701/7034 (95.3%) downloads and 1349/1608 (83.9%) and 1431/1608 (89.0%) uploads, respectively, while Carrier C completed only 62/1373 (4.5%) file downloads and 0/1373 (0.0%) file uploads. File downloads generally occurred within 4 to 12 seconds, and their maximum download speeds occurred between 2 AM and 5 AM. A decrease in network performance, demonstrated by increases in upload and download durations, was observed beginning at 5 PM and continued throughout the evening.
ConclusionsBeacon was able to compare the performance of different cellular networks, show times of day when cellular networks experience heavy loads and slow down, and identify geographic “dead zones” with limited or no cellular service. Beacon is a ready-to-use tool that could be used by organizations that are considering implementing mHealth interventions in low- and middle-income countries but are questioning the feasibility of the interventions, including infrastructure and cost. It could also be used by organizations that are looking to optimize the delivery of an existing mHealth intervention with improved logistics management.
|