A New Unconditionally Stable Method for Telegraph Equation Based on Associated Hermite Orthogonal Functions
The present paper proposes a new unconditionally stable method to solve telegraph equation by using associated Hermite (AH) orthogonal functions. Unlike other numerical approaches, the time variables in the given equation can be handled analytically by AH basis functions. By using the Galerkin’s met...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2016/7045657 |
Summary: | The present paper proposes a new unconditionally stable method to solve telegraph equation by using associated Hermite (AH) orthogonal functions. Unlike other numerical approaches, the time variables in the given equation can be handled analytically by AH basis functions. By using the Galerkin’s method, one can eliminate the time variables from calculations, which results in a series of implicit equations. And the coefficients of results for all orders can then be obtained by the expanded equations and the numerical results can be reconstructed during the computing process. The precision and stability of the proposed method are proved by some examples, which show the numerical solution acquired is acceptable when compared with some existing methods. |
---|---|
ISSN: | 1687-9120 1687-9139 |