Lysophosphatidic acid (LPA) 18:1 transcriptional regulation of primary human gingival fibroblasts

The pleiotropic, bioactive lipid lysophosphatidic acid [(LPA), 1-acyl-sn-glycerol-3-phosphate] exerts critical regulatory actions in physiology and pathophysiology in many systems. It is present in normal bodily fluids, and is elevated in pathology (1). In vivo, “LPA” exists as distinct molecular sp...

Full description

Bibliographic Details
Main Authors: D. Roselyn Cerutis, Michael D. Weston, Afolabi O. Ogunleye, Timothy P. McVaney, Takanari Miyamoto
Format: Article
Language:English
Published: Elsevier 2014-12-01
Series:Genomics Data
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213596014001032
Description
Summary:The pleiotropic, bioactive lipid lysophosphatidic acid [(LPA), 1-acyl-sn-glycerol-3-phosphate] exerts critical regulatory actions in physiology and pathophysiology in many systems. It is present in normal bodily fluids, and is elevated in pathology (1). In vivo, “LPA” exists as distinct molecular species, each having a single fatty acid of varying chain length and degree of unsaturation covalently attached to the glycerol backbone via an acyl, alkyl, or alkenyl link. These species differ in affinities for the individual LPA receptors [(LPARs), LPA1-6] and coupling to G proteins (2). However, LPA 18:1 has been and continues to be the most commonly utilized species in reported studies. The actions of “LPA” remain poorly defined in oral biology and pathophysiology. Our laboratory has addressed this knowledge gap by studying in vitro the actions of the major human salivary LPA species [18:1, 18:0, and 16:0 (3)] in human oral cells (4–7). This includes gingival fibroblasts (GF), which our flow cytometry data from multiple donors found that they express LPA1-5 (6). We have also reported that these species are ten-fold elevated to pharmacologic levels in the saliva and gingival crevicular fluid obtained from patients with moderate–severe periodontitis (8). As the potential of LPA to regulate transcriptional activity had not been examined in the oral system, this study used whole human genome microarray analysis to test the hypothesis that LPA 18:1-treated human GF would show significant changes in gene transcripts relevant to their biology, wound-healing, and inflammatory responses. LPA 18:1 was found to significantly regulate a large, complex set of genes critical to GF biology in these categories and to periodontal disease. The raw data has been deposited at NCBI's GEO database as record GSE57496.
ISSN:2213-5960