Comparison of Shell and Solid Finite Element Models for the Static Certification Tests of a 43 m Wind Turbine Blade

A commercial 43 m wind turbine blade was tested under static loads. During these tests, loads, displacements, and local strains were recorded. In this work, the blade was modeled using the finite element method. Both a segment of the spar structure and the full-scale blade were modeled. In both case...

Full description

Bibliographic Details
Main Authors: Mathijs Peeters, Gilberto Santo, Joris Degroote, Wim Van Paepegem
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/6/1346
Description
Summary:A commercial 43 m wind turbine blade was tested under static loads. During these tests, loads, displacements, and local strains were recorded. In this work, the blade was modeled using the finite element method. Both a segment of the spar structure and the full-scale blade were modeled. In both cases, conventional outer mold layer shell and layered solid models were created by means of an in-house developed software tool. First, the boundary conditions and settings for modeling the tests were explored. Next, the behavior of a spar segment under different modeling methods was investigated. Finally, the full-scale blade tests were conducted. The resulting displacements and longitudinal and transverse strains were investigated. It was found that for the considered load case, the differences between the shell and solid models are limited. Thus, it is concluded that the shell representation is sufficiently accurate.
ISSN:1996-1073