Pinched hysteresis behavior in a PID-controlled resistor

A current-controlled grounded resistor that exhibits a frequency-dependent pinched hysteresis loop is described. A mathematical model describing this behavior is derived and validated numerically, which has the form of a Proportional Integral-Derivative (PID) controller. The proposed topology is bui...

Full description

Bibliographic Details
Main Authors: M.A. Carrasco-Aguilar, C. Sánchez-López, V.H. Carbajal-Gómez
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Engineering Science and Technology, an International Journal
Online Access:http://www.sciencedirect.com/science/article/pii/S2215098618302313
Description
Summary:A current-controlled grounded resistor that exhibits a frequency-dependent pinched hysteresis loop is described. A mathematical model describing this behavior is derived and validated numerically, which has the form of a Proportional Integral-Derivative (PID) controller. The proposed topology is build by using AD844 commercially available active device configured as second-generation current conveyor and experimental tests are compared with numerical simulations, showing a good agreement among them. Moreover, the proposed PID-controlled resistor can be reconfigured in order to be used in future applications such as programmable analog circuits. Keyword: Pinched hysteresis, Current conveyors, Nonlinear resistor, Proportional-Integral-Derivative Controller
ISSN:2215-0986