An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene

Compared to heterogenous Ziegler–Natta systems (ZNS), <i>ansa</i>-metallocene catalysts for the industrial production of isotactic polypropylene feature a higher cost-to-performance balance. In particular, the <i>C</i><sub>2</sub>-symmetric <i>bis</i>(...

Full description

Bibliographic Details
Main Authors: Christian Ehm, Antonio Vittoria, Georgy P. Goryunov, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Oleg V. Samsonov, Rocco Di Girolamo, Peter H. M. Budzelaar, Alexander Z. Voskoboynikov, Vincenzo Busico, Dmitry V. Uborsky, Roberta Cipullo
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/5/1005
id doaj-54f59f4c065a4300945c91ab2efc4e11
record_format Article
spelling doaj-54f59f4c065a4300945c91ab2efc4e112020-11-25T03:53:19ZengMDPI AGPolymers2073-43602020-04-01121005100510.3390/polym12051005An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic PolypropyleneChristian Ehm0Antonio Vittoria1Georgy P. Goryunov2Vyatcheslav V. Izmer3Dmitry S. Kononovich4Oleg V. Samsonov5Rocco Di Girolamo6Peter H. M. Budzelaar7Alexander Z. Voskoboynikov8Vincenzo Busico9Dmitry V. Uborsky10Roberta Cipullo11Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyCompared to heterogenous Ziegler–Natta systems (ZNS), <i>ansa</i>-metallocene catalysts for the industrial production of isotactic polypropylene feature a higher cost-to-performance balance. In particular, the <i>C</i><sub>2</sub>-symmetric <i>bis</i>(indenyl) <i>ansa</i>-zirconocenes disclosed in the 1990s are complex to prepare, less stereo- and/or regioselective than ZNS, and lose performance at practical application temperatures. The golden era of these complexes, though, was before High Throughput Experimentation (HTE) could contribute significantly to their evolution. Herein, we illustrate a Quantitative Structure – Activity Relationship (QSAR) model trained on a robust and highly accurate HTE database. The clear-box QSAR model utilizes, in particular, a limited number of chemically intuitive 3D geometric descriptors that screen various regions of space in and around the catalytic pocket in a modular way thus enabling to quantify individual substituent contributions. The main focus of the paper is on the methodology, which should be of rather broad applicability in molecular organometallic catalysis. Then again, it is worth emphasizing that the specific application reported here led us to identify in a comparatively short time novel zirconocene catalysts rivaling or even outperforming all previous homologues which strongly indicates that the metallocene story is not over yet.https://www.mdpi.com/2073-4360/12/5/1005olefin polymerizationstereoselectivityregioselectivitymolecular weight capabilitymolecular catalystsQSAR
collection DOAJ
language English
format Article
sources DOAJ
author Christian Ehm
Antonio Vittoria
Georgy P. Goryunov
Vyatcheslav V. Izmer
Dmitry S. Kononovich
Oleg V. Samsonov
Rocco Di Girolamo
Peter H. M. Budzelaar
Alexander Z. Voskoboynikov
Vincenzo Busico
Dmitry V. Uborsky
Roberta Cipullo
spellingShingle Christian Ehm
Antonio Vittoria
Georgy P. Goryunov
Vyatcheslav V. Izmer
Dmitry S. Kononovich
Oleg V. Samsonov
Rocco Di Girolamo
Peter H. M. Budzelaar
Alexander Z. Voskoboynikov
Vincenzo Busico
Dmitry V. Uborsky
Roberta Cipullo
An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene
Polymers
olefin polymerization
stereoselectivity
regioselectivity
molecular weight capability
molecular catalysts
QSAR
author_facet Christian Ehm
Antonio Vittoria
Georgy P. Goryunov
Vyatcheslav V. Izmer
Dmitry S. Kononovich
Oleg V. Samsonov
Rocco Di Girolamo
Peter H. M. Budzelaar
Alexander Z. Voskoboynikov
Vincenzo Busico
Dmitry V. Uborsky
Roberta Cipullo
author_sort Christian Ehm
title An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene
title_short An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene
title_full An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene
title_fullStr An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene
title_full_unstemmed An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene
title_sort integrated high throughput experimentation/predictive qsar modeling approach to <i>ansa</i>-zirconocene catalysts for isotactic polypropylene
publisher MDPI AG
series Polymers
issn 2073-4360
publishDate 2020-04-01
description Compared to heterogenous Ziegler–Natta systems (ZNS), <i>ansa</i>-metallocene catalysts for the industrial production of isotactic polypropylene feature a higher cost-to-performance balance. In particular, the <i>C</i><sub>2</sub>-symmetric <i>bis</i>(indenyl) <i>ansa</i>-zirconocenes disclosed in the 1990s are complex to prepare, less stereo- and/or regioselective than ZNS, and lose performance at practical application temperatures. The golden era of these complexes, though, was before High Throughput Experimentation (HTE) could contribute significantly to their evolution. Herein, we illustrate a Quantitative Structure – Activity Relationship (QSAR) model trained on a robust and highly accurate HTE database. The clear-box QSAR model utilizes, in particular, a limited number of chemically intuitive 3D geometric descriptors that screen various regions of space in and around the catalytic pocket in a modular way thus enabling to quantify individual substituent contributions. The main focus of the paper is on the methodology, which should be of rather broad applicability in molecular organometallic catalysis. Then again, it is worth emphasizing that the specific application reported here led us to identify in a comparatively short time novel zirconocene catalysts rivaling or even outperforming all previous homologues which strongly indicates that the metallocene story is not over yet.
topic olefin polymerization
stereoselectivity
regioselectivity
molecular weight capability
molecular catalysts
QSAR
url https://www.mdpi.com/2073-4360/12/5/1005
work_keys_str_mv AT christianehm anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT antoniovittoria anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT georgypgoryunov anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT vyatcheslavvizmer anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT dmitryskononovich anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT olegvsamsonov anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT roccodigirolamo anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT peterhmbudzelaar anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT alexanderzvoskoboynikov anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT vincenzobusico anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT dmitryvuborsky anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT robertacipullo anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT christianehm integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT antoniovittoria integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT georgypgoryunov integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT vyatcheslavvizmer integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT dmitryskononovich integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT olegvsamsonov integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT roccodigirolamo integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT peterhmbudzelaar integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT alexanderzvoskoboynikov integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT vincenzobusico integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT dmitryvuborsky integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
AT robertacipullo integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene
_version_ 1724478805342420992