An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene
Compared to heterogenous Ziegler–Natta systems (ZNS), <i>ansa</i>-metallocene catalysts for the industrial production of isotactic polypropylene feature a higher cost-to-performance balance. In particular, the <i>C</i><sub>2</sub>-symmetric <i>bis</i>(...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/12/5/1005 |
id |
doaj-54f59f4c065a4300945c91ab2efc4e11 |
---|---|
record_format |
Article |
spelling |
doaj-54f59f4c065a4300945c91ab2efc4e112020-11-25T03:53:19ZengMDPI AGPolymers2073-43602020-04-01121005100510.3390/polym12051005An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic PolypropyleneChristian Ehm0Antonio Vittoria1Georgy P. Goryunov2Vyatcheslav V. Izmer3Dmitry S. Kononovich4Oleg V. Samsonov5Rocco Di Girolamo6Peter H. M. Budzelaar7Alexander Z. Voskoboynikov8Vincenzo Busico9Dmitry V. Uborsky10Roberta Cipullo11Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyDepartment of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, RussiaDipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, ItalyCompared to heterogenous Ziegler–Natta systems (ZNS), <i>ansa</i>-metallocene catalysts for the industrial production of isotactic polypropylene feature a higher cost-to-performance balance. In particular, the <i>C</i><sub>2</sub>-symmetric <i>bis</i>(indenyl) <i>ansa</i>-zirconocenes disclosed in the 1990s are complex to prepare, less stereo- and/or regioselective than ZNS, and lose performance at practical application temperatures. The golden era of these complexes, though, was before High Throughput Experimentation (HTE) could contribute significantly to their evolution. Herein, we illustrate a Quantitative Structure – Activity Relationship (QSAR) model trained on a robust and highly accurate HTE database. The clear-box QSAR model utilizes, in particular, a limited number of chemically intuitive 3D geometric descriptors that screen various regions of space in and around the catalytic pocket in a modular way thus enabling to quantify individual substituent contributions. The main focus of the paper is on the methodology, which should be of rather broad applicability in molecular organometallic catalysis. Then again, it is worth emphasizing that the specific application reported here led us to identify in a comparatively short time novel zirconocene catalysts rivaling or even outperforming all previous homologues which strongly indicates that the metallocene story is not over yet.https://www.mdpi.com/2073-4360/12/5/1005olefin polymerizationstereoselectivityregioselectivitymolecular weight capabilitymolecular catalystsQSAR |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Christian Ehm Antonio Vittoria Georgy P. Goryunov Vyatcheslav V. Izmer Dmitry S. Kononovich Oleg V. Samsonov Rocco Di Girolamo Peter H. M. Budzelaar Alexander Z. Voskoboynikov Vincenzo Busico Dmitry V. Uborsky Roberta Cipullo |
spellingShingle |
Christian Ehm Antonio Vittoria Georgy P. Goryunov Vyatcheslav V. Izmer Dmitry S. Kononovich Oleg V. Samsonov Rocco Di Girolamo Peter H. M. Budzelaar Alexander Z. Voskoboynikov Vincenzo Busico Dmitry V. Uborsky Roberta Cipullo An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene Polymers olefin polymerization stereoselectivity regioselectivity molecular weight capability molecular catalysts QSAR |
author_facet |
Christian Ehm Antonio Vittoria Georgy P. Goryunov Vyatcheslav V. Izmer Dmitry S. Kononovich Oleg V. Samsonov Rocco Di Girolamo Peter H. M. Budzelaar Alexander Z. Voskoboynikov Vincenzo Busico Dmitry V. Uborsky Roberta Cipullo |
author_sort |
Christian Ehm |
title |
An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene |
title_short |
An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene |
title_full |
An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene |
title_fullStr |
An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene |
title_full_unstemmed |
An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to <i>ansa</i>-Zirconocene Catalysts for Isotactic Polypropylene |
title_sort |
integrated high throughput experimentation/predictive qsar modeling approach to <i>ansa</i>-zirconocene catalysts for isotactic polypropylene |
publisher |
MDPI AG |
series |
Polymers |
issn |
2073-4360 |
publishDate |
2020-04-01 |
description |
Compared to heterogenous Ziegler–Natta systems (ZNS), <i>ansa</i>-metallocene catalysts for the industrial production of isotactic polypropylene feature a higher cost-to-performance balance. In particular, the <i>C</i><sub>2</sub>-symmetric <i>bis</i>(indenyl) <i>ansa</i>-zirconocenes disclosed in the 1990s are complex to prepare, less stereo- and/or regioselective than ZNS, and lose performance at practical application temperatures. The golden era of these complexes, though, was before High Throughput Experimentation (HTE) could contribute significantly to their evolution. Herein, we illustrate a Quantitative Structure – Activity Relationship (QSAR) model trained on a robust and highly accurate HTE database. The clear-box QSAR model utilizes, in particular, a limited number of chemically intuitive 3D geometric descriptors that screen various regions of space in and around the catalytic pocket in a modular way thus enabling to quantify individual substituent contributions. The main focus of the paper is on the methodology, which should be of rather broad applicability in molecular organometallic catalysis. Then again, it is worth emphasizing that the specific application reported here led us to identify in a comparatively short time novel zirconocene catalysts rivaling or even outperforming all previous homologues which strongly indicates that the metallocene story is not over yet. |
topic |
olefin polymerization stereoselectivity regioselectivity molecular weight capability molecular catalysts QSAR |
url |
https://www.mdpi.com/2073-4360/12/5/1005 |
work_keys_str_mv |
AT christianehm anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT antoniovittoria anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT georgypgoryunov anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT vyatcheslavvizmer anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT dmitryskononovich anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT olegvsamsonov anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT roccodigirolamo anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT peterhmbudzelaar anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT alexanderzvoskoboynikov anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT vincenzobusico anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT dmitryvuborsky anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT robertacipullo anintegratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT christianehm integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT antoniovittoria integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT georgypgoryunov integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT vyatcheslavvizmer integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT dmitryskononovich integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT olegvsamsonov integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT roccodigirolamo integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT peterhmbudzelaar integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT alexanderzvoskoboynikov integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT vincenzobusico integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT dmitryvuborsky integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene AT robertacipullo integratedhighthroughputexperimentationpredictiveqsarmodelingapproachtoiansaizirconocenecatalystsforisotacticpolypropylene |
_version_ |
1724478805342420992 |