Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies.
Four distinct subspecies of the insect hemolymph lipoprotein, lipophorin, that range in diacylglycerol (DAG) content from approximately 100 to 1000 molecules per particle, were treated with phospholipase C. Lipid analysis demonstrated that both phosphatidylcholine and phosphatidylethanolamine were h...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
1994-09-01
|
Series: | Journal of Lipid Research |
Online Access: | http://www.sciencedirect.com/science/article/pii/S002222752041154X |
id |
doaj-54eeb579284f4d01b51f9690bcf0e7b8 |
---|---|
record_format |
Article |
spelling |
doaj-54eeb579284f4d01b51f9690bcf0e7b82021-04-26T05:51:52ZengElsevierJournal of Lipid Research0022-22751994-09-0135915611569Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies.T.K Singh0H Liu1R Bradley2D.G Scraba3R.O Ryan4Department of Biochemistry, University of Alberta, Edmonton, Canada.Department of Biochemistry, University of Alberta, Edmonton, Canada.Department of Biochemistry, University of Alberta, Edmonton, Canada.Department of Biochemistry, University of Alberta, Edmonton, Canada.Department of Biochemistry, University of Alberta, Edmonton, Canada.Four distinct subspecies of the insect hemolymph lipoprotein, lipophorin, that range in diacylglycerol (DAG) content from approximately 100 to 1000 molecules per particle, were treated with phospholipase C. Lipid analysis demonstrated that both phosphatidylcholine and phosphatidylethanolamine were hydrolyzed to DAG. Phospholipase C was used to remove 74-82% of the phospholipid of different lipophorins and these were analyzed for aggregation. Low density lipophorin (LDLp), the largest subspecies, with a diameter of approximately 23 nm, developed turbidity (monitored by sample absorbance at 340 nm) suggesting the formation of lipoprotein aggregates. High density lipophorin-adult (HDLp-A) and high density lipophorin-wanderer 1 (HDLp-W1) also displayed an increase in A340 when incubated with phospholipase C, although the maximal increase observed was considerably less than that for LDLp on a per particle basis. Phospholipase C caused only a minimal increase in A340 in a fourth subspecies, high density lipophorin-wanderer 2 (HDLp-W2), which contains an even lower amount of DAG. Electron microscopy was used to evaluate changes in particle morphology as a result of phospholipid depletion. HDLp-W2 and HDLp-W1 showed signs of progressive aggregation and particle fusion. A similar aggregation/fusion was seen in the case of high density lipophorin adult (HDLp-A) while LDLp samples contained multiple aggregation/fusion foci and resultant very large particles. In the presence of exogenous apolipophorin III (apoLp-III), phospholipase C-induced lipophorin aggregation/fusion was prevented. Electron microscopy of LDLp and HDLp-A samples revealed that apoLp-III-stabilized, phospholipase C-treated particles had a morphology similar to that of control particles.(ABSTRACT TRUNCATED AT 250 WORDS)http://www.sciencedirect.com/science/article/pii/S002222752041154X |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
T.K Singh H Liu R Bradley D.G Scraba R.O Ryan |
spellingShingle |
T.K Singh H Liu R Bradley D.G Scraba R.O Ryan Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies. Journal of Lipid Research |
author_facet |
T.K Singh H Liu R Bradley D.G Scraba R.O Ryan |
author_sort |
T.K Singh |
title |
Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies. |
title_short |
Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies. |
title_full |
Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies. |
title_fullStr |
Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies. |
title_full_unstemmed |
Effect of phospholipase C and apolipophorin III on the structure and stability of lipophorin subspecies. |
title_sort |
effect of phospholipase c and apolipophorin iii on the structure and stability of lipophorin subspecies. |
publisher |
Elsevier |
series |
Journal of Lipid Research |
issn |
0022-2275 |
publishDate |
1994-09-01 |
description |
Four distinct subspecies of the insect hemolymph lipoprotein, lipophorin, that range in diacylglycerol (DAG) content from approximately 100 to 1000 molecules per particle, were treated with phospholipase C. Lipid analysis demonstrated that both phosphatidylcholine and phosphatidylethanolamine were hydrolyzed to DAG. Phospholipase C was used to remove 74-82% of the phospholipid of different lipophorins and these were analyzed for aggregation. Low density lipophorin (LDLp), the largest subspecies, with a diameter of approximately 23 nm, developed turbidity (monitored by sample absorbance at 340 nm) suggesting the formation of lipoprotein aggregates. High density lipophorin-adult (HDLp-A) and high density lipophorin-wanderer 1 (HDLp-W1) also displayed an increase in A340 when incubated with phospholipase C, although the maximal increase observed was considerably less than that for LDLp on a per particle basis. Phospholipase C caused only a minimal increase in A340 in a fourth subspecies, high density lipophorin-wanderer 2 (HDLp-W2), which contains an even lower amount of DAG. Electron microscopy was used to evaluate changes in particle morphology as a result of phospholipid depletion. HDLp-W2 and HDLp-W1 showed signs of progressive aggregation and particle fusion. A similar aggregation/fusion was seen in the case of high density lipophorin adult (HDLp-A) while LDLp samples contained multiple aggregation/fusion foci and resultant very large particles. In the presence of exogenous apolipophorin III (apoLp-III), phospholipase C-induced lipophorin aggregation/fusion was prevented. Electron microscopy of LDLp and HDLp-A samples revealed that apoLp-III-stabilized, phospholipase C-treated particles had a morphology similar to that of control particles.(ABSTRACT TRUNCATED AT 250 WORDS) |
url |
http://www.sciencedirect.com/science/article/pii/S002222752041154X |
work_keys_str_mv |
AT tksingh effectofphospholipasecandapolipophoriniiionthestructureandstabilityoflipophorinsubspecies AT hliu effectofphospholipasecandapolipophoriniiionthestructureandstabilityoflipophorinsubspecies AT rbradley effectofphospholipasecandapolipophoriniiionthestructureandstabilityoflipophorinsubspecies AT dgscraba effectofphospholipasecandapolipophoriniiionthestructureandstabilityoflipophorinsubspecies AT roryan effectofphospholipasecandapolipophoriniiionthestructureandstabilityoflipophorinsubspecies |
_version_ |
1721508267964760064 |