Summary: | <h4>Background</h4>To design HIV prevention programmes, it is critical to understand the temporal and geographic aspects of the local epidemic and to address the key behaviours that drive HIV transmission. Two methods have been developed to appraise HIV epidemics and guide prevention strategies. The numerical proxy method classifies epidemics based on current HIV prevalence thresholds. The Modes of Transmission (MOT) model estimates the distribution of incidence over one year among risk-groups. Both methods focus on the current state of an epidemic and provide short-term metrics which may not capture the epidemiologic drivers. Through a detailed analysis of country and sub-national data, we explore the limitations of the two traditional methods and propose an alternative approach.<h4>Methods and findings</h4>We compared outputs of the traditional methods in five countries for which results were published, and applied the numeric and MOT model to India and six districts within India. We discovered three limitations of the current methods for epidemic appraisal: (1) their results failed to identify the key behaviours that drive the epidemic; (2) they were difficult to apply to local epidemics with heterogeneity across district-level administrative units; and (3) the MOT model was highly sensitive to input parameters, many of which required extraction from non-regional sources. We developed an alternative decision-tree framework for HIV epidemic appraisals, based on a qualitative understanding of epidemiologic drivers, and demonstrated its applicability in India. The alternative framework offered a logical algorithm to characterize epidemics; it required minimal but key data.<h4>Conclusions</h4>Traditional appraisals that utilize the distribution of prevalent and incident HIV infections in the short-term could misguide prevention priorities and potentially impede efforts to halt the trajectory of the HIV epidemic. An approach that characterizes local transmission dynamics provides a potentially more effective tool with which policy makers can design intervention programmes.
|