Summary: | Early detection of pollutants in wastewater, water coming out of treatment facilities, drinking water, and water for agricultural needs is a challenging problem. Effective water quality monitoring requires development of new methods for express detection of pollutants. Enzymes from bioluminescent bacteria can be used for the development of new express enzyme-based bioassay systems. This work demonstrates, for the first time, a microfluidic chip to generate emulsion droplets containing two enzymes of the bacterial bioluminescent system (luciferase and NAD(P)H:FMN-oxidoreductase) with reaction substrates. The developed chip generated “water-in-oil” emulsion droplets with a volume of 0.1 <inline-formula><math display="inline"><semantics><mi mathvariant="sans-serif">μ</mi></semantics></math></inline-formula>L and a frequency of up to 12 droplets per second. A portable photomultiplier tube (PMT) was used to measure the bioluminescent signal in each individual droplet; the signal-to-noise ratio was 3000/1. The intensity of luminescence in droplets depended on the concentration of copper ions. The limit of detection (LOD) for copper sulfate was 1 mg/L. We showed that bioluminescent enzymatic reactions can be carried out in droplet reactors that can be applied for online monitoring of water quality. Thus, the suggested method of biological measurements has a good perspective for biosensing in general.
|