A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures
A multi-scale fatigue analysis method for braided ceramic matrix composites (CMCs) based on sub-models is developed in this paper. The finite element shape function is used as the interpolation function for transferring the displacement information between the macro-scale and meso-scale models. The...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/14/15/4190 |
id |
doaj-5495a401c8f04d93856e74f59f927d37 |
---|---|
record_format |
Article |
spelling |
doaj-5495a401c8f04d93856e74f59f927d372021-08-06T15:27:39ZengMDPI AGMaterials1996-19442021-07-01144190419010.3390/ma14154190A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite StructuresJincheng Zheng0Peiwei Zhang1Dahai Zhang2Dong Jiang3School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, ChinaInstitute of Aerospace Machinery and Dynamics, Southeast University, Nanjing 211189, ChinaInstitute of Aerospace Machinery and Dynamics, Southeast University, Nanjing 211189, ChinaSchool of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, ChinaA multi-scale fatigue analysis method for braided ceramic matrix composites (CMCs) based on sub-models is developed in this paper. The finite element shape function is used as the interpolation function for transferring the displacement information between the macro-scale and meso-scale models. The fatigue failure criterion based on the shear lag theory is used to implement the coupling calculation of the meso-scale and micro-scale. Combining the meso-scale cell model and the fatigue failure criterion based on the shear lag theory, the fatigue life of 2D SiC/SiC is analyzed. The analysis results are in good agreement with the experimental results, which proves the accuracy of the meso-scale cell model and the fatigue life calculation method. A multi-scale sub-model fatigue analysis method is used to study the fatigue damage of 2D SiC/SiC stiffened plates under random tension–tension loads. The influence of the sub-models at different positions in the macro-model element on the analysis results was analyzed. The results shows that the fatigue analysis method proposed in this paper takes into account the damage condition of the meso-structured of composite material, and at the same time has high calculation efficiency, and has low requirements for modeling of the macro finite element model, which can be better applied to the fatigue analysis of CMCs structure.https://www.mdpi.com/1996-1944/14/15/41902D braided CMCsmulti-scale fatigue life analysis methodsub-model2D SiC/SiC stiffened platesrandom tension–tension loading |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jincheng Zheng Peiwei Zhang Dahai Zhang Dong Jiang |
spellingShingle |
Jincheng Zheng Peiwei Zhang Dahai Zhang Dong Jiang A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures Materials 2D braided CMCs multi-scale fatigue life analysis method sub-model 2D SiC/SiC stiffened plates random tension–tension loading |
author_facet |
Jincheng Zheng Peiwei Zhang Dahai Zhang Dong Jiang |
author_sort |
Jincheng Zheng |
title |
A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures |
title_short |
A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures |
title_full |
A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures |
title_fullStr |
A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures |
title_full_unstemmed |
A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures |
title_sort |
multi-scale submodel method for fatigue analysis of braided composite structures |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2021-07-01 |
description |
A multi-scale fatigue analysis method for braided ceramic matrix composites (CMCs) based on sub-models is developed in this paper. The finite element shape function is used as the interpolation function for transferring the displacement information between the macro-scale and meso-scale models. The fatigue failure criterion based on the shear lag theory is used to implement the coupling calculation of the meso-scale and micro-scale. Combining the meso-scale cell model and the fatigue failure criterion based on the shear lag theory, the fatigue life of 2D SiC/SiC is analyzed. The analysis results are in good agreement with the experimental results, which proves the accuracy of the meso-scale cell model and the fatigue life calculation method. A multi-scale sub-model fatigue analysis method is used to study the fatigue damage of 2D SiC/SiC stiffened plates under random tension–tension loads. The influence of the sub-models at different positions in the macro-model element on the analysis results was analyzed. The results shows that the fatigue analysis method proposed in this paper takes into account the damage condition of the meso-structured of composite material, and at the same time has high calculation efficiency, and has low requirements for modeling of the macro finite element model, which can be better applied to the fatigue analysis of CMCs structure. |
topic |
2D braided CMCs multi-scale fatigue life analysis method sub-model 2D SiC/SiC stiffened plates random tension–tension loading |
url |
https://www.mdpi.com/1996-1944/14/15/4190 |
work_keys_str_mv |
AT jinchengzheng amultiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures AT peiweizhang amultiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures AT dahaizhang amultiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures AT dongjiang amultiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures AT jinchengzheng multiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures AT peiweizhang multiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures AT dahaizhang multiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures AT dongjiang multiscalesubmodelmethodforfatigueanalysisofbraidedcompositestructures |
_version_ |
1721218022379618304 |