Fault Diagnosis of Rolling Bearing Based on Modified Deep Metric Learning Method

A novel fault diagnosis method of rolling bearing based on deep metric learning and Yu norm is proposed in this paper, which is called a deep metric learning method based on Yu norm (DMN-Yu). In order to solve the misclassification caused by the traditional deep metric learning based on distance met...

Full description

Bibliographic Details
Main Authors: Zengbing Xu, Xiaojuan Li, Hui Lin, Zhigang Wang, Tao Peng
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/6635008
Description
Summary:A novel fault diagnosis method of rolling bearing based on deep metric learning and Yu norm is proposed in this paper, which is called a deep metric learning method based on Yu norm (DMN-Yu). In order to solve the misclassification caused by the traditional deep metric learning based on distance metric function, a similarity criterion based on Yu norm is introduced into the traditional deep metric learning. Firstly, the deep metric learning neural network (DMN) is used to adaptively extract the fault feature parameters. Secondly, considering that the data samples at the boundary between different fault categories can be misclassified, the marginal Fisher analysis method based on Yu norm is used to optimize the features. And then, BPNN classifier of DMN-Yu method is used to fine tune the network parameters and diagnose the fault category. Finally, the effectiveness and feasibility of the proposed DMN-Yu method is verified with the rolling bearing fault diagnosis test. And the superiority of the proposed diagnosis method is validated by comparing its diagnosis accuracy with the deep metric learning method based on Euclidean distance (DMN-Euc), traditional deep belief network (DBN), and support vector machine (SVM) combined with the common time-domain statistical features.
ISSN:1875-9203