Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3
The aim of this work is to completely solve the reversibility problem for symmetric linear cellular automata with radius <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>3</mn> </mrow> &l...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-09-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/9/816 |
id |
doaj-547a47295c8741509d2f349299d45d4e |
---|---|
record_format |
Article |
spelling |
doaj-547a47295c8741509d2f349299d45d4e2020-11-25T01:09:43ZengMDPI AGMathematics2227-73902019-09-017981610.3390/math7090816math7090816Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3A. Martín del Rey0R. Casado Vara1D. Hernández Serrano2Department of Applied Mathematics, IUFFyM, University of Salamanca, 37008-Salamanca, SpainBISITE Research Group, University of Salamanca, 37008-Salamanca, SpainDepartment of Mathematics, IUFFyM, University of Salamanca, 37008-Salamanca, SpainThe aim of this work is to completely solve the reversibility problem for symmetric linear cellular automata with radius <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> and null boundary conditions. The main result obtained is the explicit computation of the local transition functions of the inverse cellular automata. This allows introduction of possible and interesting applications in digital image encryption.https://www.mdpi.com/2227-7390/7/9/816linear cellular automatareversibilitysymmetric rules |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. Martín del Rey R. Casado Vara D. Hernández Serrano |
spellingShingle |
A. Martín del Rey R. Casado Vara D. Hernández Serrano Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3 Mathematics linear cellular automata reversibility symmetric rules |
author_facet |
A. Martín del Rey R. Casado Vara D. Hernández Serrano |
author_sort |
A. Martín del Rey |
title |
Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3 |
title_short |
Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3 |
title_full |
Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3 |
title_fullStr |
Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3 |
title_full_unstemmed |
Reversibility of Symmetric Linear Cellular Automata with Radius <i>r</i> = 3 |
title_sort |
reversibility of symmetric linear cellular automata with radius <i>r</i> = 3 |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2019-09-01 |
description |
The aim of this work is to completely solve the reversibility problem for symmetric linear cellular automata with radius <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> and null boundary conditions. The main result obtained is the explicit computation of the local transition functions of the inverse cellular automata. This allows introduction of possible and interesting applications in digital image encryption. |
topic |
linear cellular automata reversibility symmetric rules |
url |
https://www.mdpi.com/2227-7390/7/9/816 |
work_keys_str_mv |
AT amartindelrey reversibilityofsymmetriclinearcellularautomatawithradiusiri3 AT rcasadovara reversibilityofsymmetriclinearcellularautomatawithradiusiri3 AT dhernandezserrano reversibilityofsymmetriclinearcellularautomatawithradiusiri3 |
_version_ |
1725177071218458624 |