Summary: | As an emerging technique of wireless communication, visible light communication is experiencing a boom in the global communications field, and the dream of accessing the Internet with light is fast becoming a reality. Multiple input multiple output, which is a key technique in radio frequency communication, can multiply channel capacity. However, it suffers the trouble of too large channel correlation when directly applied to visible light communication. The aims of this paper were to investigate spatial modulation and cooperative communication, then put forward a cooperative strategy based on space–time labeling diversity for indoor visible light communication systems to achieve high reliability. This scheme was conceived in two steps: (1) a cooperative indoor visible light communication system with a source luminaire, a relay luminaire, and a destination receiver was set up by employing the idea of cooperative transmission. Relative to the destination receiver, these two luminaires can be symmetric or asymmetric in geographical distribution. (2) Space–time labeling diversity of the constellations at the source luminaire was re-adjusted at the relay luminaire to enlarge the product of the distance of corresponding points on both constellations and was introduced on the basis of spatial modulation. Furthermore, total bit error ratio of the proposed cooperative indoor visible light communication system was derived. This scheme was implemented through Monte Carlo simulation. Evaluations of performance demonstrated the superiority of the cooperative strategy based on space–time labeling diversity over conventional optical transmission schemes. The presented approach in this paper could be of some value and interest to those who are working on visible light communication devices.
|