An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar

The analysis error covariance is not readily available from four-dimensional variational (4dvar) data assimilation methods, not because of the complexity of mathematical derivation, but rather its computational expense. A number of techniques have been explored for more readily obtaining the analysi...

Full description

Bibliographic Details
Main Authors: H. Ngodock, I. Souopgui, M. Carrier, S. Smith, J. Osborne, J. D’Addezio
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Tellus: Series A, Dynamic Meteorology and Oceanography
Subjects:
Online Access:http://dx.doi.org/10.1080/16000870.2020.1771069
id doaj-5473023f49be41b6b89e28b7a2c06ca8
record_format Article
spelling doaj-5473023f49be41b6b89e28b7a2c06ca82021-02-18T10:31:40ZengTaylor & Francis GroupTellus: Series A, Dynamic Meteorology and Oceanography1600-08702020-01-0172111210.1080/16000870.2020.17710691771069An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvarH. Ngodock0I. Souopgui1M. Carrier2S. Smith3J. Osborne4J. D’Addezio5The US Naval Research Laboratory Code 7320, Stennis Space CenterThe University of New OrleansThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe analysis error covariance is not readily available from four-dimensional variational (4dvar) data assimilation methods, not because of the complexity of mathematical derivation, but rather its computational expense. A number of techniques have been explored for more readily obtaining the analysis error covariance such as using Monte–Carlo methods, an ensemble of analyses, or the adjoint of the assimilation method; but each of these methods retain the issue of computational inefficiency. This study proposes a novel and less computationally costly, approach to estimating the 4dvar analysis error covariance. It consists of generating an ensemble of pseudo analyses by perturbing the optimal adjoint solution. An application with a nonlinear model is shown.http://dx.doi.org/10.1080/16000870.2020.1771069variational data assimilation4dvaranalysis error covariance
collection DOAJ
language English
format Article
sources DOAJ
author H. Ngodock
I. Souopgui
M. Carrier
S. Smith
J. Osborne
J. D’Addezio
spellingShingle H. Ngodock
I. Souopgui
M. Carrier
S. Smith
J. Osborne
J. D’Addezio
An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
Tellus: Series A, Dynamic Meteorology and Oceanography
variational data assimilation
4dvar
analysis error covariance
author_facet H. Ngodock
I. Souopgui
M. Carrier
S. Smith
J. Osborne
J. D’Addezio
author_sort H. Ngodock
title An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
title_short An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
title_full An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
title_fullStr An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
title_full_unstemmed An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
title_sort ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
publisher Taylor & Francis Group
series Tellus: Series A, Dynamic Meteorology and Oceanography
issn 1600-0870
publishDate 2020-01-01
description The analysis error covariance is not readily available from four-dimensional variational (4dvar) data assimilation methods, not because of the complexity of mathematical derivation, but rather its computational expense. A number of techniques have been explored for more readily obtaining the analysis error covariance such as using Monte–Carlo methods, an ensemble of analyses, or the adjoint of the assimilation method; but each of these methods retain the issue of computational inefficiency. This study proposes a novel and less computationally costly, approach to estimating the 4dvar analysis error covariance. It consists of generating an ensemble of pseudo analyses by perturbing the optimal adjoint solution. An application with a nonlinear model is shown.
topic variational data assimilation
4dvar
analysis error covariance
url http://dx.doi.org/10.1080/16000870.2020.1771069
work_keys_str_mv AT hngodock anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT isouopgui anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT mcarrier anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT ssmith anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT josborne anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT jdaddezio anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT hngodock ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT isouopgui ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT mcarrier ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT ssmith ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT josborne ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
AT jdaddezio ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar
_version_ 1724263546185842688