An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar
The analysis error covariance is not readily available from four-dimensional variational (4dvar) data assimilation methods, not because of the complexity of mathematical derivation, but rather its computational expense. A number of techniques have been explored for more readily obtaining the analysi...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2020-01-01
|
Series: | Tellus: Series A, Dynamic Meteorology and Oceanography |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/16000870.2020.1771069 |
id |
doaj-5473023f49be41b6b89e28b7a2c06ca8 |
---|---|
record_format |
Article |
spelling |
doaj-5473023f49be41b6b89e28b7a2c06ca82021-02-18T10:31:40ZengTaylor & Francis GroupTellus: Series A, Dynamic Meteorology and Oceanography1600-08702020-01-0172111210.1080/16000870.2020.17710691771069An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvarH. Ngodock0I. Souopgui1M. Carrier2S. Smith3J. Osborne4J. D’Addezio5The US Naval Research Laboratory Code 7320, Stennis Space CenterThe University of New OrleansThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe US Naval Research Laboratory Code 7320, Stennis Space CenterThe analysis error covariance is not readily available from four-dimensional variational (4dvar) data assimilation methods, not because of the complexity of mathematical derivation, but rather its computational expense. A number of techniques have been explored for more readily obtaining the analysis error covariance such as using Monte–Carlo methods, an ensemble of analyses, or the adjoint of the assimilation method; but each of these methods retain the issue of computational inefficiency. This study proposes a novel and less computationally costly, approach to estimating the 4dvar analysis error covariance. It consists of generating an ensemble of pseudo analyses by perturbing the optimal adjoint solution. An application with a nonlinear model is shown.http://dx.doi.org/10.1080/16000870.2020.1771069variational data assimilation4dvaranalysis error covariance |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
H. Ngodock I. Souopgui M. Carrier S. Smith J. Osborne J. D’Addezio |
spellingShingle |
H. Ngodock I. Souopgui M. Carrier S. Smith J. Osborne J. D’Addezio An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar Tellus: Series A, Dynamic Meteorology and Oceanography variational data assimilation 4dvar analysis error covariance |
author_facet |
H. Ngodock I. Souopgui M. Carrier S. Smith J. Osborne J. D’Addezio |
author_sort |
H. Ngodock |
title |
An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar |
title_short |
An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar |
title_full |
An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar |
title_fullStr |
An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar |
title_full_unstemmed |
An ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar |
title_sort |
ensemble of perturbed analyses to approximate the analysis error covariance in 4dvar |
publisher |
Taylor & Francis Group |
series |
Tellus: Series A, Dynamic Meteorology and Oceanography |
issn |
1600-0870 |
publishDate |
2020-01-01 |
description |
The analysis error covariance is not readily available from four-dimensional variational (4dvar) data assimilation methods, not because of the complexity of mathematical derivation, but rather its computational expense. A number of techniques have been explored for more readily obtaining the analysis error covariance such as using Monte–Carlo methods, an ensemble of analyses, or the adjoint of the assimilation method; but each of these methods retain the issue of computational inefficiency. This study proposes a novel and less computationally costly, approach to estimating the 4dvar analysis error covariance. It consists of generating an ensemble of pseudo analyses by perturbing the optimal adjoint solution. An application with a nonlinear model is shown. |
topic |
variational data assimilation 4dvar analysis error covariance |
url |
http://dx.doi.org/10.1080/16000870.2020.1771069 |
work_keys_str_mv |
AT hngodock anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT isouopgui anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT mcarrier anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT ssmith anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT josborne anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT jdaddezio anensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT hngodock ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT isouopgui ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT mcarrier ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT ssmith ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT josborne ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar AT jdaddezio ensembleofperturbedanalysestoapproximatetheanalysiserrorcovariancein4dvar |
_version_ |
1724263546185842688 |