A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
In this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1]. The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference s...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Biomath Forum
2016-09-01
|
Series: | Biomath |
Subjects: | |
Online Access: | http://www.biomathforum.org/biomath/index.php/biomath/article/view/573 |
id |
doaj-546f02b729304107a7795416c03e951b |
---|---|
record_format |
Article |
spelling |
doaj-546f02b729304107a7795416c03e951b2020-11-24T20:44:06ZengBiomath ForumBiomath1314-684X1314-72182016-09-015210.11145/j.biomath.2016.08.111532A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equationsIshwariya Raj0Princy Mercy Johnson1John J.H Miller2Valarmathi Sigamani3Bishop Heber College, Tiruchirappalli-620017 Tamil Nadu, IndiaBishop Heber College, Tiruchirappalli-620017 Tamil Nadu, IndiaInstitute for Numerical Computation and Analysis, DublinBishop Heber College, Tiruchirappalli-620017 Tamil Nadu, IndiaIn this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1]. The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved to be almost first order convergent in the maximum norm uniformly in the perturbation parameters.http://www.biomathforum.org/biomath/index.php/biomath/article/view/573Singular Perturbation Problems, boundary layers, nonlinear differential equations, finite difference schemes, Shishkin mesh, parameter uniform convergence. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ishwariya Raj Princy Mercy Johnson John J.H Miller Valarmathi Sigamani |
spellingShingle |
Ishwariya Raj Princy Mercy Johnson John J.H Miller Valarmathi Sigamani A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations Biomath Singular Perturbation Problems, boundary layers, nonlinear differential equations, finite difference schemes, Shishkin mesh, parameter uniform convergence. |
author_facet |
Ishwariya Raj Princy Mercy Johnson John J.H Miller Valarmathi Sigamani |
author_sort |
Ishwariya Raj |
title |
A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations |
title_short |
A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations |
title_full |
A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations |
title_fullStr |
A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations |
title_full_unstemmed |
A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations |
title_sort |
parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations |
publisher |
Biomath Forum |
series |
Biomath |
issn |
1314-684X 1314-7218 |
publishDate |
2016-09-01 |
description |
In this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1].
The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved to be almost first order convergent in the maximum norm uniformly in the perturbation parameters. |
topic |
Singular Perturbation Problems, boundary layers, nonlinear differential equations, finite difference schemes, Shishkin mesh, parameter uniform convergence. |
url |
http://www.biomathforum.org/biomath/index.php/biomath/article/view/573 |
work_keys_str_mv |
AT ishwariyaraj aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations AT princymercyjohnson aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations AT johnjhmiller aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations AT valarmathisigamani aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations AT ishwariyaraj parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations AT princymercyjohnson parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations AT johnjhmiller parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations AT valarmathisigamani parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations |
_version_ |
1716818364054110208 |