A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations

In this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1]. The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference s...

Full description

Bibliographic Details
Main Authors: Ishwariya Raj, Princy Mercy Johnson, John J.H Miller, Valarmathi Sigamani
Format: Article
Language:English
Published: Biomath Forum 2016-09-01
Series:Biomath
Subjects:
Online Access:http://www.biomathforum.org/biomath/index.php/biomath/article/view/573
id doaj-546f02b729304107a7795416c03e951b
record_format Article
spelling doaj-546f02b729304107a7795416c03e951b2020-11-24T20:44:06ZengBiomath ForumBiomath1314-684X1314-72182016-09-015210.11145/j.biomath.2016.08.111532A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equationsIshwariya Raj0Princy Mercy Johnson1John J.H Miller2Valarmathi Sigamani3Bishop Heber College, Tiruchirappalli-620017 Tamil Nadu, IndiaBishop Heber College, Tiruchirappalli-620017 Tamil Nadu, IndiaInstitute for Numerical Computation and Analysis, DublinBishop Heber College, Tiruchirappalli-620017 Tamil Nadu, IndiaIn this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1]. The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved to be almost first order convergent in the maximum norm uniformly in the perturbation parameters.http://www.biomathforum.org/biomath/index.php/biomath/article/view/573Singular Perturbation Problems, boundary layers, nonlinear differential equations, finite difference schemes, Shishkin mesh, parameter uniform convergence.
collection DOAJ
language English
format Article
sources DOAJ
author Ishwariya Raj
Princy Mercy Johnson
John J.H Miller
Valarmathi Sigamani
spellingShingle Ishwariya Raj
Princy Mercy Johnson
John J.H Miller
Valarmathi Sigamani
A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
Biomath
Singular Perturbation Problems, boundary layers, nonlinear differential equations, finite difference schemes, Shishkin mesh, parameter uniform convergence.
author_facet Ishwariya Raj
Princy Mercy Johnson
John J.H Miller
Valarmathi Sigamani
author_sort Ishwariya Raj
title A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
title_short A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
title_full A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
title_fullStr A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
title_full_unstemmed A parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
title_sort parameter uniform almost first order convergent numerical method for non-linear system of singularly perturbed differential equations
publisher Biomath Forum
series Biomath
issn 1314-684X
1314-7218
publishDate 2016-09-01
description In this paper an initial value problem for a non-linear system of two singularly perturbed first order differential equations is considered on the interval (0,1]. The components of the solution of this system exhibit initial layers at 0. A numerical method composed of a classical finite difference scheme on a piecewise uniform Shishkin mesh is suggested. This method is proved to be almost first order convergent in the maximum norm uniformly in the perturbation parameters.
topic Singular Perturbation Problems, boundary layers, nonlinear differential equations, finite difference schemes, Shishkin mesh, parameter uniform convergence.
url http://www.biomathforum.org/biomath/index.php/biomath/article/view/573
work_keys_str_mv AT ishwariyaraj aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
AT princymercyjohnson aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
AT johnjhmiller aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
AT valarmathisigamani aparameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
AT ishwariyaraj parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
AT princymercyjohnson parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
AT johnjhmiller parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
AT valarmathisigamani parameteruniformalmostfirstorderconvergentnumericalmethodfornonlinearsystemofsingularlyperturbeddifferentialequations
_version_ 1716818364054110208