Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation

We investigate the Tricomi boundary value problem for a differential-difference leading-lagging equation of mixed type with non-Carleman deviations in all arguments of the required function. A reduction is applied to a mixed-type equation without deviations. Symmetric pairwise commutative matric...

Full description

Bibliographic Details
Main Author: Zarubin, Alexandr Nikolaevich
Format: Article
Language:English
Published: Samara State Technical University 2021-01-01
Series:Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
Online Access:http://mi.mathnet.ru/vsgtu1835
id doaj-544f988ff57747fbb3dc259c6b6dc695
record_format Article
spelling doaj-544f988ff57747fbb3dc259c6b6dc6952021-04-20T19:40:51ZengSamara State Technical UniversityVestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki1991-86152310-70812021-01-01251355010.14498/vsgtu1835Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equationZarubin, Alexandr Nikolaevich We investigate the Tricomi boundary value problem for a differential-difference leading-lagging equation of mixed type with non-Carleman deviations in all arguments of the required function. A reduction is applied to a mixed-type equation without deviations. Symmetric pairwise commutative matrices of the coefficients of the equation are used. The theorems of uniqueness and existence are proved. The problem is unambiguously solvable.http://mi.mathnet.ru/vsgtu1835
collection DOAJ
language English
format Article
sources DOAJ
author Zarubin, Alexandr Nikolaevich
spellingShingle Zarubin, Alexandr Nikolaevich
Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
author_facet Zarubin, Alexandr Nikolaevich
author_sort Zarubin, Alexandr Nikolaevich
title Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
title_short Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
title_full Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
title_fullStr Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
title_full_unstemmed Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
title_sort nonlocal tricomi boundary value problem for a mixed-type differential-difference equation
publisher Samara State Technical University
series Vestnik Samarskogo Gosudarstvennogo Tehničeskogo Universiteta. Seriâ: Fiziko-Matematičeskie Nauki
issn 1991-8615
2310-7081
publishDate 2021-01-01
description We investigate the Tricomi boundary value problem for a differential-difference leading-lagging equation of mixed type with non-Carleman deviations in all arguments of the required function. A reduction is applied to a mixed-type equation without deviations. Symmetric pairwise commutative matrices of the coefficients of the equation are used. The theorems of uniqueness and existence are proved. The problem is unambiguously solvable.
url http://mi.mathnet.ru/vsgtu1835
work_keys_str_mv AT zarubinalexandrnikolaevich nonlocaltricomiboundaryvalueproblemforamixedtypedifferentialdifferenceequation
_version_ 1721517365920792576