Static Analysis of in-Plane Heterogeneous Laminated Composite Plates Using Equilibrated Basis Functions Based on FSDT

In this paper, static analysis of in-plane heterogeneous laminated composite plates is numerically studied. The Mindlin’s theory which considers linear transverse shear deformation has been implemented. The governing partial differential equation is satisfied by a weighted residual integration. Cheb...

Full description

Bibliographic Details
Main Authors: M. Azizpooryan, N. Noormohammadi
Format: Article
Language:fas
Published: Isfahan University of Technology 2021-09-01
Series:Ravish/hā-yi ̒adadī dar Muhandisī
Subjects:
Online Access:http://jcme.iut.ac.ir/article-1-827-en.html
Description
Summary:In this paper, static analysis of in-plane heterogeneous laminated composite plates is numerically studied. The Mindlin’s theory which considers linear transverse shear deformation has been implemented. The governing partial differential equation is satisfied by a weighted residual integration. Chebyshev polynomials of the first kind are used as basis functions and exponential functions make up the weight functions of the integration. The emerging integrals may be composed of some pre-evaluated 1D normalized ones, which effectively paces up the solution progress. To verify the method, several examples of homogeneous as well as heterogeneous plates with various lamination schemes and boundary conditions have been solved. Results are compared with those from the literature or by commercial codes, which reveal excellent accuracy of the proposed method.
ISSN:2228-7698
2423-5741