Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics

In this work, the spread of hypergeometric orthogonal polynomials (HOPs) along their orthogonality interval is examined by means of the main entropy-like measures of their associated Rakhmanov’s probability density—so, far beyond the standard deviation and its generalizations, the ordinary moments....

Full description

Bibliographic Details
Main Author: Jesús S. Dehesa
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/8/1416
id doaj-542e56f20568402399aadea4ef66d5b7
record_format Article
spelling doaj-542e56f20568402399aadea4ef66d5b72021-08-26T14:23:57ZengMDPI AGSymmetry2073-89942021-08-01131416141610.3390/sym13081416Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree AsymptoticsJesús S. Dehesa0Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, SpainIn this work, the spread of hypergeometric orthogonal polynomials (HOPs) along their orthogonality interval is examined by means of the main entropy-like measures of their associated Rakhmanov’s probability density—so, far beyond the standard deviation and its generalizations, the ordinary moments. The Fisher information, the Rényi and Shannon entropies, and their corresponding spreading lengths are analytically expressed in terms of the degree and the parameter(s) of the orthogonality weight function. These entropic quantities are closely related to the gradient functional (Fisher) and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-norms (Rényi, Shannon) of the polynomials. In addition, the degree asymptotics for these entropy-like functionals of the three canonical families of HPOs (i.e., Hermite, Laguerre, and Jacobi polynomials) are given and briefly discussed. Finally, a number of open related issues are identified whose solutions are both physico-mathematically and computationally relevant.https://www.mdpi.com/2073-8994/13/8/1416special functionsclassical orthogonal polynomialsentropy-like measuresasymptotics
collection DOAJ
language English
format Article
sources DOAJ
author Jesús S. Dehesa
spellingShingle Jesús S. Dehesa
Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics
Symmetry
special functions
classical orthogonal polynomials
entropy-like measures
asymptotics
author_facet Jesús S. Dehesa
author_sort Jesús S. Dehesa
title Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics
title_short Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics
title_full Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics
title_fullStr Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics
title_full_unstemmed Entropy-Like Properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics
title_sort entropy-like properties and <inline-formula><math display="inline"><semantics><msub><mi mathvariant="fraktur">l</mi><mi>q</mi></msub></semantics></math></inline-formula>-norms of hypergeometric orthogonal polynomials: degree asymptotics
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-08-01
description In this work, the spread of hypergeometric orthogonal polynomials (HOPs) along their orthogonality interval is examined by means of the main entropy-like measures of their associated Rakhmanov’s probability density—so, far beyond the standard deviation and its generalizations, the ordinary moments. The Fisher information, the Rényi and Shannon entropies, and their corresponding spreading lengths are analytically expressed in terms of the degree and the parameter(s) of the orthogonality weight function. These entropic quantities are closely related to the gradient functional (Fisher) and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="fraktur">L</mi><mi>q</mi></msub></semantics></math></inline-formula>-norms (Rényi, Shannon) of the polynomials. In addition, the degree asymptotics for these entropy-like functionals of the three canonical families of HPOs (i.e., Hermite, Laguerre, and Jacobi polynomials) are given and briefly discussed. Finally, a number of open related issues are identified whose solutions are both physico-mathematically and computationally relevant.
topic special functions
classical orthogonal polynomials
entropy-like measures
asymptotics
url https://www.mdpi.com/2073-8994/13/8/1416
work_keys_str_mv AT jesussdehesa entropylikepropertiesandinlineformulamathdisplayinlinesemanticsmsubmimathvariantfrakturlmimiqmimsubsemanticsmathinlineformulanormsofhypergeometricorthogonalpolynomialsdegreeasymptotics
_version_ 1721189697951105024