Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling
In the present study, a method of Partial-Averaged Navier-Stokes (PANS) equations, purported to perform variable resolution modeling, is used to predict the heat transfer over a square cylinder in a cross-flow. The PANS closure is based on the RANS SST k-ω model paradigm. The simulations were carrie...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Isfahan University of Technology
2016-01-01
|
Series: | Journal of Applied Fluid Mechanics |
Subjects: | |
Online Access: | http://jafmonline.net/JournalArchive/download?file_ID=39832&issue_ID=228 |
id |
doaj-5429f1e756e64690973023e083c56465 |
---|---|
record_format |
Article |
spelling |
doaj-5429f1e756e64690973023e083c564652020-11-24T20:48:17ZengIsfahan University of Technology Journal of Applied Fluid Mechanics1735-35722016-01-019313671379.Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution ModelingPritanshu Ranjan0A. Dewan1Indian Institute of Technology DelhiDepartment of Applied Mechanics, Indian Institute of Technology Delhi Hauz Khas, New Delhi - 110016, IndiaIn the present study, a method of Partial-Averaged Navier-Stokes (PANS) equations, purported to perform variable resolution modeling, is used to predict the heat transfer over a square cylinder in a cross-flow. The PANS closure is based on the RANS SST k-ω model paradigm. The simulations were carried out using an open source software, namely, Open FOAM, at Reynolds number = 22000. The open source code and the PANS model are validated against the experimental work reported in the literature and it was observed that both the mean flow properties and turbulent statistics were in good agreement with the experimental results. Further the capability of the PANS approach in predicting heat transfer in turbulent flow is also studied. An algebraic wall function is used for the near wall treatment of the energy equation. The computed, average and local Nusselt numbers are compared with the experimental and LES results reported in the literature. The phase-averaged analysis of the shedding phenomenon is studied to understand the heat transfer phenomenon at different faces of the cylinder and turbulent heat fluxes are also considered to understand the effect of turbulence on convection.http://jafmonline.net/JournalArchive/download?file_ID=39832&issue_ID=228Turbulent heat transfer; Open FOAM; Partially-averaged navier-stokes (PANS); SST k-ω turbulence model. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pritanshu Ranjan A. Dewan |
spellingShingle |
Pritanshu Ranjan A. Dewan Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling Journal of Applied Fluid Mechanics Turbulent heat transfer; Open FOAM; Partially-averaged navier-stokes (PANS); SST k-ω turbulence model. |
author_facet |
Pritanshu Ranjan A. Dewan |
author_sort |
Pritanshu Ranjan |
title |
Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling |
title_short |
Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling |
title_full |
Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling |
title_fullStr |
Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling |
title_full_unstemmed |
Study of Heat Transfer over a Square Cylinder in Cross Flow using Variable Resolution Modeling |
title_sort |
study of heat transfer over a square cylinder in cross flow using variable resolution modeling |
publisher |
Isfahan University of Technology |
series |
Journal of Applied Fluid Mechanics |
issn |
1735-3572 |
publishDate |
2016-01-01 |
description |
In the present study, a method of Partial-Averaged Navier-Stokes (PANS) equations, purported to perform variable resolution modeling, is used to predict the heat transfer over a square cylinder in a cross-flow. The PANS closure is based on the RANS SST k-ω model paradigm. The simulations were carried out using an open source software, namely, Open FOAM, at Reynolds number = 22000. The open source code and the PANS model are validated against the experimental work reported in the literature and it was observed that both the mean flow properties and turbulent statistics were in good agreement with the experimental results. Further the capability of the PANS approach in predicting heat transfer in turbulent flow is also studied. An algebraic wall function is used for the near wall treatment of the energy equation. The computed, average and local Nusselt numbers are compared with the experimental and LES results reported in the literature. The phase-averaged analysis of the shedding phenomenon is studied to understand the heat transfer phenomenon at different faces of the cylinder and turbulent heat fluxes are also considered to understand the effect of turbulence on convection. |
topic |
Turbulent heat transfer; Open FOAM; Partially-averaged navier-stokes (PANS); SST k-ω turbulence model. |
url |
http://jafmonline.net/JournalArchive/download?file_ID=39832&issue_ID=228 |
work_keys_str_mv |
AT pritanshuranjan studyofheattransferoverasquarecylinderincrossflowusingvariableresolutionmodeling AT adewan studyofheattransferoverasquarecylinderincrossflowusingvariableresolutionmodeling |
_version_ |
1716808324168548352 |